Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
book3s_32_mmu_host.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2010 SUSE Linux Products GmbH. All rights reserved.
3  *
4  * Authors:
5  * Alexander Graf <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License, version 2, as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19  */
20 
21 #include <linux/kvm_host.h>
22 
23 #include <asm/kvm_ppc.h>
24 #include <asm/kvm_book3s.h>
25 #include <asm/mmu-hash32.h>
26 #include <asm/machdep.h>
27 #include <asm/mmu_context.h>
28 #include <asm/hw_irq.h>
29 
30 /* #define DEBUG_MMU */
31 /* #define DEBUG_SR */
32 
33 #ifdef DEBUG_MMU
34 #define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
35 #else
36 #define dprintk_mmu(a, ...) do { } while(0)
37 #endif
38 
39 #ifdef DEBUG_SR
40 #define dprintk_sr(a, ...) printk(KERN_INFO a, __VA_ARGS__)
41 #else
42 #define dprintk_sr(a, ...) do { } while(0)
43 #endif
44 
45 #if PAGE_SHIFT != 12
46 #error Unknown page size
47 #endif
48 
49 #ifdef CONFIG_SMP
50 #error XXX need to grab mmu_hash_lock
51 #endif
52 
53 #ifdef CONFIG_PTE_64BIT
54 #error Only 32 bit pages are supported for now
55 #endif
56 
57 static ulong htab;
58 static u32 htabmask;
59 
60 void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
61 {
62  volatile u32 *pteg;
63 
64  /* Remove from host HTAB */
65  pteg = (u32*)pte->slot;
66  pteg[0] = 0;
67 
68  /* And make sure it's gone from the TLB too */
69  asm volatile ("sync");
70  asm volatile ("tlbie %0" : : "r" (pte->pte.eaddr) : "memory");
71  asm volatile ("sync");
72  asm volatile ("tlbsync");
73 }
74 
75 /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
76  * a hash, so we don't waste cycles on looping */
77 static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
78 {
79  return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
80  ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
81  ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
82  ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
83  ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
84  ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
85  ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
86  ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
87 }
88 
89 
90 static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
91 {
92  struct kvmppc_sid_map *map;
93  u16 sid_map_mask;
94 
95  if (vcpu->arch.shared->msr & MSR_PR)
96  gvsid |= VSID_PR;
97 
98  sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
99  map = &to_book3s(vcpu)->sid_map[sid_map_mask];
100  if (map->guest_vsid == gvsid) {
101  dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
102  gvsid, map->host_vsid);
103  return map;
104  }
105 
106  map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
107  if (map->guest_vsid == gvsid) {
108  dprintk_sr("SR: Searching 0x%llx -> 0x%llx\n",
109  gvsid, map->host_vsid);
110  return map;
111  }
112 
113  dprintk_sr("SR: Searching 0x%llx -> not found\n", gvsid);
114  return NULL;
115 }
116 
117 static u32 *kvmppc_mmu_get_pteg(struct kvm_vcpu *vcpu, u32 vsid, u32 eaddr,
118  bool primary)
119 {
120  u32 page, hash;
121  ulong pteg = htab;
122 
123  page = (eaddr & ~ESID_MASK) >> 12;
124 
125  hash = ((vsid ^ page) << 6);
126  if (!primary)
127  hash = ~hash;
128 
129  hash &= htabmask;
130 
131  pteg |= hash;
132 
133  dprintk_mmu("htab: %lx | hash: %x | htabmask: %x | pteg: %lx\n",
134  htab, hash, htabmask, pteg);
135 
136  return (u32*)pteg;
137 }
138 
139 extern char etext[];
140 
141 int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
142 {
143  pfn_t hpaddr;
144  u64 vpn;
145  u64 vsid;
146  struct kvmppc_sid_map *map;
147  volatile u32 *pteg;
148  u32 eaddr = orig_pte->eaddr;
149  u32 pteg0, pteg1;
150  register int rr = 0;
151  bool primary = false;
152  bool evict = false;
153  struct hpte_cache *pte;
154  int r = 0;
155 
156  /* Get host physical address for gpa */
157  hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
158  if (is_error_pfn(hpaddr)) {
159  printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n",
160  orig_pte->eaddr);
161  r = -EINVAL;
162  goto out;
163  }
164  hpaddr <<= PAGE_SHIFT;
165 
166  /* and write the mapping ea -> hpa into the pt */
167  vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
168  map = find_sid_vsid(vcpu, vsid);
169  if (!map) {
170  kvmppc_mmu_map_segment(vcpu, eaddr);
171  map = find_sid_vsid(vcpu, vsid);
172  }
173  BUG_ON(!map);
174 
175  vsid = map->host_vsid;
176  vpn = (vsid << (SID_SHIFT - VPN_SHIFT)) |
177  ((eaddr & ~ESID_MASK) >> VPN_SHIFT);
178 next_pteg:
179  if (rr == 16) {
180  primary = !primary;
181  evict = true;
182  rr = 0;
183  }
184 
185  pteg = kvmppc_mmu_get_pteg(vcpu, vsid, eaddr, primary);
186 
187  /* not evicting yet */
188  if (!evict && (pteg[rr] & PTE_V)) {
189  rr += 2;
190  goto next_pteg;
191  }
192 
193  dprintk_mmu("KVM: old PTEG: %p (%d)\n", pteg, rr);
194  dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
195  dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
196  dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
197  dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
198  dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
199  dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
200  dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
201  dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
202 
203  pteg0 = ((eaddr & 0x0fffffff) >> 22) | (vsid << 7) | PTE_V |
204  (primary ? 0 : PTE_SEC);
205  pteg1 = hpaddr | PTE_M | PTE_R | PTE_C;
206 
207  if (orig_pte->may_write) {
208  pteg1 |= PP_RWRW;
209  mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
210  } else {
211  pteg1 |= PP_RWRX;
212  }
213 
214  if (orig_pte->may_execute)
215  kvmppc_mmu_flush_icache(hpaddr >> PAGE_SHIFT);
216 
218 
219  if (pteg[rr]) {
220  pteg[rr] = 0;
221  asm volatile ("sync");
222  }
223  pteg[rr + 1] = pteg1;
224  pteg[rr] = pteg0;
225  asm volatile ("sync");
226 
228 
229  dprintk_mmu("KVM: new PTEG: %p\n", pteg);
230  dprintk_mmu("KVM: %08x - %08x\n", pteg[0], pteg[1]);
231  dprintk_mmu("KVM: %08x - %08x\n", pteg[2], pteg[3]);
232  dprintk_mmu("KVM: %08x - %08x\n", pteg[4], pteg[5]);
233  dprintk_mmu("KVM: %08x - %08x\n", pteg[6], pteg[7]);
234  dprintk_mmu("KVM: %08x - %08x\n", pteg[8], pteg[9]);
235  dprintk_mmu("KVM: %08x - %08x\n", pteg[10], pteg[11]);
236  dprintk_mmu("KVM: %08x - %08x\n", pteg[12], pteg[13]);
237  dprintk_mmu("KVM: %08x - %08x\n", pteg[14], pteg[15]);
238 
239 
240  /* Now tell our Shadow PTE code about the new page */
241 
242  pte = kvmppc_mmu_hpte_cache_next(vcpu);
243 
244  dprintk_mmu("KVM: %c%c Map 0x%llx: [%lx] 0x%llx (0x%llx) -> %lx\n",
245  orig_pte->may_write ? 'w' : '-',
246  orig_pte->may_execute ? 'x' : '-',
247  orig_pte->eaddr, (ulong)pteg, vpn,
248  orig_pte->vpage, hpaddr);
249 
250  pte->slot = (ulong)&pteg[rr];
251  pte->host_vpn = vpn;
252  pte->pte = *orig_pte;
253  pte->pfn = hpaddr >> PAGE_SHIFT;
254 
255  kvmppc_mmu_hpte_cache_map(vcpu, pte);
256 
257 out:
258  return r;
259 }
260 
261 static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
262 {
263  struct kvmppc_sid_map *map;
264  struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
265  u16 sid_map_mask;
266  static int backwards_map = 0;
267 
268  if (vcpu->arch.shared->msr & MSR_PR)
269  gvsid |= VSID_PR;
270 
271  /* We might get collisions that trap in preceding order, so let's
272  map them differently */
273 
274  sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
275  if (backwards_map)
276  sid_map_mask = SID_MAP_MASK - sid_map_mask;
277 
278  map = &to_book3s(vcpu)->sid_map[sid_map_mask];
279 
280  /* Make sure we're taking the other map next time */
281  backwards_map = !backwards_map;
282 
283  /* Uh-oh ... out of mappings. Let's flush! */
284  if (vcpu_book3s->vsid_next >= VSID_POOL_SIZE) {
285  vcpu_book3s->vsid_next = 0;
286  memset(vcpu_book3s->sid_map, 0,
287  sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
288  kvmppc_mmu_pte_flush(vcpu, 0, 0);
290  }
291  map->host_vsid = vcpu_book3s->vsid_pool[vcpu_book3s->vsid_next];
292  vcpu_book3s->vsid_next++;
293 
294  map->guest_vsid = gvsid;
295  map->valid = true;
296 
297  return map;
298 }
299 
300 int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
301 {
302  u32 esid = eaddr >> SID_SHIFT;
303  u64 gvsid;
304  u32 sr;
305  struct kvmppc_sid_map *map;
306  struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
307  int r = 0;
308 
309  if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
310  /* Invalidate an entry */
311  svcpu->sr[esid] = SR_INVALID;
312  r = -ENOENT;
313  goto out;
314  }
315 
316  map = find_sid_vsid(vcpu, gvsid);
317  if (!map)
318  map = create_sid_map(vcpu, gvsid);
319 
320  map->guest_esid = esid;
321  sr = map->host_vsid | SR_KP;
322  svcpu->sr[esid] = sr;
323 
324  dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);
325 
326 out:
327  svcpu_put(svcpu);
328  return r;
329 }
330 
332 {
333  int i;
334  struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
335 
336  dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
337  for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
338  svcpu->sr[i] = SR_INVALID;
339 
340  svcpu_put(svcpu);
341 }
342 
343 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
344 {
345  int i;
346 
348  preempt_disable();
349  for (i = 0; i < SID_CONTEXTS; i++)
350  __destroy_context(to_book3s(vcpu)->context_id[i]);
351  preempt_enable();
352 }
353 
354 /* From mm/mmu_context_hash32.c */
355 #define CTX_TO_VSID(c, id) ((((c) * (897 * 16)) + (id * 0x111)) & 0xffffff)
356 
357 int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
358 {
359  struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
360  int err;
361  ulong sdr1;
362  int i;
363  int j;
364 
365  for (i = 0; i < SID_CONTEXTS; i++) {
366  err = __init_new_context();
367  if (err < 0)
368  goto init_fail;
369  vcpu3s->context_id[i] = err;
370 
371  /* Remember context id for this combination */
372  for (j = 0; j < 16; j++)
373  vcpu3s->vsid_pool[(i * 16) + j] = CTX_TO_VSID(err, j);
374  }
375 
376  vcpu3s->vsid_next = 0;
377 
378  /* Remember where the HTAB is */
379  asm ( "mfsdr1 %0" : "=r"(sdr1) );
380  htabmask = ((sdr1 & 0x1FF) << 16) | 0xFFC0;
381  htab = (ulong)__va(sdr1 & 0xffff0000);
382 
383  kvmppc_mmu_hpte_init(vcpu);
384 
385  return 0;
386 
387 init_fail:
388  for (j = 0; j < i; j++) {
389  if (!vcpu3s->context_id[j])
390  continue;
391 
392  __destroy_context(to_book3s(vcpu)->context_id[j]);
393  }
394 
395  return -1;
396 }