Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
brd.c
Go to the documentation of this file.
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 
23 #include <asm/uaccess.h>
24 
25 #define SECTOR_SHIFT 9
26 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
27 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
28 
29 /*
30  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
31  * the pages containing the block device's contents. A brd page's ->index is
32  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
33  * with, the kernel's pagecache or buffer cache (which sit above our block
34  * device).
35  */
36 struct brd_device {
38 
40  struct gendisk *brd_disk;
42 
43  /*
44  * Backing store of pages and lock to protect it. This is the contents
45  * of the block device.
46  */
49 };
50 
51 /*
52  * Look up and return a brd's page for a given sector.
53  */
54 static DEFINE_MUTEX(brd_mutex);
55 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56 {
57  pgoff_t idx;
58  struct page *page;
59 
60  /*
61  * The page lifetime is protected by the fact that we have opened the
62  * device node -- brd pages will never be deleted under us, so we
63  * don't need any further locking or refcounting.
64  *
65  * This is strictly true for the radix-tree nodes as well (ie. we
66  * don't actually need the rcu_read_lock()), however that is not a
67  * documented feature of the radix-tree API so it is better to be
68  * safe here (we don't have total exclusion from radix tree updates
69  * here, only deletes).
70  */
71  rcu_read_lock();
72  idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73  page = radix_tree_lookup(&brd->brd_pages, idx);
74  rcu_read_unlock();
75 
76  BUG_ON(page && page->index != idx);
77 
78  return page;
79 }
80 
81 /*
82  * Look up and return a brd's page for a given sector.
83  * If one does not exist, allocate an empty page, and insert that. Then
84  * return it.
85  */
86 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87 {
88  pgoff_t idx;
89  struct page *page;
90  gfp_t gfp_flags;
91 
92  page = brd_lookup_page(brd, sector);
93  if (page)
94  return page;
95 
96  /*
97  * Must use NOIO because we don't want to recurse back into the
98  * block or filesystem layers from page reclaim.
99  *
100  * Cannot support XIP and highmem, because our ->direct_access
101  * routine for XIP must return memory that is always addressable.
102  * If XIP was reworked to use pfns and kmap throughout, this
103  * restriction might be able to be lifted.
104  */
105  gfp_flags = GFP_NOIO | __GFP_ZERO;
106 #ifndef CONFIG_BLK_DEV_XIP
107  gfp_flags |= __GFP_HIGHMEM;
108 #endif
109  page = alloc_page(gfp_flags);
110  if (!page)
111  return NULL;
112 
114  __free_page(page);
115  return NULL;
116  }
117 
118  spin_lock(&brd->brd_lock);
119  idx = sector >> PAGE_SECTORS_SHIFT;
120  if (radix_tree_insert(&brd->brd_pages, idx, page)) {
121  __free_page(page);
122  page = radix_tree_lookup(&brd->brd_pages, idx);
123  BUG_ON(!page);
124  BUG_ON(page->index != idx);
125  } else
126  page->index = idx;
127  spin_unlock(&brd->brd_lock);
128 
129  radix_tree_preload_end();
130 
131  return page;
132 }
133 
134 static void brd_free_page(struct brd_device *brd, sector_t sector)
135 {
136  struct page *page;
137  pgoff_t idx;
138 
139  spin_lock(&brd->brd_lock);
140  idx = sector >> PAGE_SECTORS_SHIFT;
141  page = radix_tree_delete(&brd->brd_pages, idx);
142  spin_unlock(&brd->brd_lock);
143  if (page)
144  __free_page(page);
145 }
146 
147 static void brd_zero_page(struct brd_device *brd, sector_t sector)
148 {
149  struct page *page;
150 
151  page = brd_lookup_page(brd, sector);
152  if (page)
153  clear_highpage(page);
154 }
155 
156 /*
157  * Free all backing store pages and radix tree. This must only be called when
158  * there are no other users of the device.
159  */
160 #define FREE_BATCH 16
161 static void brd_free_pages(struct brd_device *brd)
162 {
163  unsigned long pos = 0;
164  struct page *pages[FREE_BATCH];
165  int nr_pages;
166 
167  do {
168  int i;
169 
170  nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
171  (void **)pages, pos, FREE_BATCH);
172 
173  for (i = 0; i < nr_pages; i++) {
174  void *ret;
175 
176  BUG_ON(pages[i]->index < pos);
177  pos = pages[i]->index;
178  ret = radix_tree_delete(&brd->brd_pages, pos);
179  BUG_ON(!ret || ret != pages[i]);
180  __free_page(pages[i]);
181  }
182 
183  pos++;
184 
185  /*
186  * This assumes radix_tree_gang_lookup always returns as
187  * many pages as possible. If the radix-tree code changes,
188  * so will this have to.
189  */
190  } while (nr_pages == FREE_BATCH);
191 }
192 
193 /*
194  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
195  */
196 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
197 {
198  unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
199  size_t copy;
200 
201  copy = min_t(size_t, n, PAGE_SIZE - offset);
202  if (!brd_insert_page(brd, sector))
203  return -ENOMEM;
204  if (copy < n) {
205  sector += copy >> SECTOR_SHIFT;
206  if (!brd_insert_page(brd, sector))
207  return -ENOMEM;
208  }
209  return 0;
210 }
211 
212 static void discard_from_brd(struct brd_device *brd,
213  sector_t sector, size_t n)
214 {
215  while (n >= PAGE_SIZE) {
216  /*
217  * Don't want to actually discard pages here because
218  * re-allocating the pages can result in writeback
219  * deadlocks under heavy load.
220  */
221  if (0)
222  brd_free_page(brd, sector);
223  else
224  brd_zero_page(brd, sector);
225  sector += PAGE_SIZE >> SECTOR_SHIFT;
226  n -= PAGE_SIZE;
227  }
228 }
229 
230 /*
231  * Copy n bytes from src to the brd starting at sector. Does not sleep.
232  */
233 static void copy_to_brd(struct brd_device *brd, const void *src,
234  sector_t sector, size_t n)
235 {
236  struct page *page;
237  void *dst;
238  unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
239  size_t copy;
240 
241  copy = min_t(size_t, n, PAGE_SIZE - offset);
242  page = brd_lookup_page(brd, sector);
243  BUG_ON(!page);
244 
245  dst = kmap_atomic(page);
246  memcpy(dst + offset, src, copy);
247  kunmap_atomic(dst);
248 
249  if (copy < n) {
250  src += copy;
251  sector += copy >> SECTOR_SHIFT;
252  copy = n - copy;
253  page = brd_lookup_page(brd, sector);
254  BUG_ON(!page);
255 
256  dst = kmap_atomic(page);
257  memcpy(dst, src, copy);
258  kunmap_atomic(dst);
259  }
260 }
261 
262 /*
263  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
264  */
265 static void copy_from_brd(void *dst, struct brd_device *brd,
266  sector_t sector, size_t n)
267 {
268  struct page *page;
269  void *src;
270  unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
271  size_t copy;
272 
273  copy = min_t(size_t, n, PAGE_SIZE - offset);
274  page = brd_lookup_page(brd, sector);
275  if (page) {
276  src = kmap_atomic(page);
277  memcpy(dst, src + offset, copy);
278  kunmap_atomic(src);
279  } else
280  memset(dst, 0, copy);
281 
282  if (copy < n) {
283  dst += copy;
284  sector += copy >> SECTOR_SHIFT;
285  copy = n - copy;
286  page = brd_lookup_page(brd, sector);
287  if (page) {
288  src = kmap_atomic(page);
289  memcpy(dst, src, copy);
290  kunmap_atomic(src);
291  } else
292  memset(dst, 0, copy);
293  }
294 }
295 
296 /*
297  * Process a single bvec of a bio.
298  */
299 static int brd_do_bvec(struct brd_device *brd, struct page *page,
300  unsigned int len, unsigned int off, int rw,
301  sector_t sector)
302 {
303  void *mem;
304  int err = 0;
305 
306  if (rw != READ) {
307  err = copy_to_brd_setup(brd, sector, len);
308  if (err)
309  goto out;
310  }
311 
312  mem = kmap_atomic(page);
313  if (rw == READ) {
314  copy_from_brd(mem + off, brd, sector, len);
315  flush_dcache_page(page);
316  } else {
317  flush_dcache_page(page);
318  copy_to_brd(brd, mem + off, sector, len);
319  }
320  kunmap_atomic(mem);
321 
322 out:
323  return err;
324 }
325 
326 static void brd_make_request(struct request_queue *q, struct bio *bio)
327 {
328  struct block_device *bdev = bio->bi_bdev;
329  struct brd_device *brd = bdev->bd_disk->private_data;
330  int rw;
331  struct bio_vec *bvec;
333  int i;
334  int err = -EIO;
335 
336  sector = bio->bi_sector;
337  if (sector + (bio->bi_size >> SECTOR_SHIFT) >
338  get_capacity(bdev->bd_disk))
339  goto out;
340 
341  if (unlikely(bio->bi_rw & REQ_DISCARD)) {
342  err = 0;
343  discard_from_brd(brd, sector, bio->bi_size);
344  goto out;
345  }
346 
347  rw = bio_rw(bio);
348  if (rw == READA)
349  rw = READ;
350 
351  bio_for_each_segment(bvec, bio, i) {
352  unsigned int len = bvec->bv_len;
353  err = brd_do_bvec(brd, bvec->bv_page, len,
354  bvec->bv_offset, rw, sector);
355  if (err)
356  break;
357  sector += len >> SECTOR_SHIFT;
358  }
359 
360 out:
361  bio_endio(bio, err);
362 }
363 
364 #ifdef CONFIG_BLK_DEV_XIP
365 static int brd_direct_access(struct block_device *bdev, sector_t sector,
366  void **kaddr, unsigned long *pfn)
367 {
368  struct brd_device *brd = bdev->bd_disk->private_data;
369  struct page *page;
370 
371  if (!brd)
372  return -ENODEV;
373  if (sector & (PAGE_SECTORS-1))
374  return -EINVAL;
375  if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
376  return -ERANGE;
377  page = brd_insert_page(brd, sector);
378  if (!page)
379  return -ENOMEM;
380  *kaddr = page_address(page);
381  *pfn = page_to_pfn(page);
382 
383  return 0;
384 }
385 #endif
386 
387 static int brd_ioctl(struct block_device *bdev, fmode_t mode,
388  unsigned int cmd, unsigned long arg)
389 {
390  int error;
391  struct brd_device *brd = bdev->bd_disk->private_data;
392 
393  if (cmd != BLKFLSBUF)
394  return -ENOTTY;
395 
396  /*
397  * ram device BLKFLSBUF has special semantics, we want to actually
398  * release and destroy the ramdisk data.
399  */
400  mutex_lock(&brd_mutex);
401  mutex_lock(&bdev->bd_mutex);
402  error = -EBUSY;
403  if (bdev->bd_openers <= 1) {
404  /*
405  * Kill the cache first, so it isn't written back to the
406  * device.
407  *
408  * Another thread might instantiate more buffercache here,
409  * but there is not much we can do to close that race.
410  */
411  kill_bdev(bdev);
412  brd_free_pages(brd);
413  error = 0;
414  }
415  mutex_unlock(&bdev->bd_mutex);
416  mutex_unlock(&brd_mutex);
417 
418  return error;
419 }
420 
421 static const struct block_device_operations brd_fops = {
422  .owner = THIS_MODULE,
423  .ioctl = brd_ioctl,
424 #ifdef CONFIG_BLK_DEV_XIP
425  .direct_access = brd_direct_access,
426 #endif
427 };
428 
429 /*
430  * And now the modules code and kernel interface.
431  */
432 static int rd_nr;
433 int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
434 static int max_part;
435 static int part_shift;
436 module_param(rd_nr, int, S_IRUGO);
437 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
438 module_param(rd_size, int, S_IRUGO);
439 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
440 module_param(max_part, int, S_IRUGO);
441 MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
442 MODULE_LICENSE("GPL");
444 MODULE_ALIAS("rd");
445 
446 #ifndef MODULE
447 /* Legacy boot options - nonmodular */
448 static int __init ramdisk_size(char *str)
449 {
450  rd_size = simple_strtol(str, NULL, 0);
451  return 1;
452 }
453 __setup("ramdisk_size=", ramdisk_size);
454 #endif
455 
456 /*
457  * The device scheme is derived from loop.c. Keep them in synch where possible
458  * (should share code eventually).
459  */
460 static LIST_HEAD(brd_devices);
461 static DEFINE_MUTEX(brd_devices_mutex);
462 
463 static struct brd_device *brd_alloc(int i)
464 {
465  struct brd_device *brd;
466  struct gendisk *disk;
467 
468  brd = kzalloc(sizeof(*brd), GFP_KERNEL);
469  if (!brd)
470  goto out;
471  brd->brd_number = i;
472  spin_lock_init(&brd->brd_lock);
474 
476  if (!brd->brd_queue)
477  goto out_free_dev;
478  blk_queue_make_request(brd->brd_queue, brd_make_request);
480  blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
481 
482  brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
483  brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
484  brd->brd_queue->limits.discard_zeroes_data = 1;
485  queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
486 
487  disk = brd->brd_disk = alloc_disk(1 << part_shift);
488  if (!disk)
489  goto out_free_queue;
490  disk->major = RAMDISK_MAJOR;
491  disk->first_minor = i << part_shift;
492  disk->fops = &brd_fops;
493  disk->private_data = brd;
494  disk->queue = brd->brd_queue;
495  disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
496  sprintf(disk->disk_name, "ram%d", i);
497  set_capacity(disk, rd_size * 2);
498 
499  return brd;
500 
501 out_free_queue:
503 out_free_dev:
504  kfree(brd);
505 out:
506  return NULL;
507 }
508 
509 static void brd_free(struct brd_device *brd)
510 {
511  put_disk(brd->brd_disk);
513  brd_free_pages(brd);
514  kfree(brd);
515 }
516 
517 static struct brd_device *brd_init_one(int i)
518 {
519  struct brd_device *brd;
520 
521  list_for_each_entry(brd, &brd_devices, brd_list) {
522  if (brd->brd_number == i)
523  goto out;
524  }
525 
526  brd = brd_alloc(i);
527  if (brd) {
528  add_disk(brd->brd_disk);
529  list_add_tail(&brd->brd_list, &brd_devices);
530  }
531 out:
532  return brd;
533 }
534 
535 static void brd_del_one(struct brd_device *brd)
536 {
537  list_del(&brd->brd_list);
538  del_gendisk(brd->brd_disk);
539  brd_free(brd);
540 }
541 
542 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
543 {
544  struct brd_device *brd;
545  struct kobject *kobj;
546 
547  mutex_lock(&brd_devices_mutex);
548  brd = brd_init_one(MINOR(dev) >> part_shift);
549  kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
550  mutex_unlock(&brd_devices_mutex);
551 
552  *part = 0;
553  return kobj;
554 }
555 
556 static int __init brd_init(void)
557 {
558  int i, nr;
559  unsigned long range;
560  struct brd_device *brd, *next;
561 
562  /*
563  * brd module now has a feature to instantiate underlying device
564  * structure on-demand, provided that there is an access dev node.
565  * However, this will not work well with user space tool that doesn't
566  * know about such "feature". In order to not break any existing
567  * tool, we do the following:
568  *
569  * (1) if rd_nr is specified, create that many upfront, and this
570  * also becomes a hard limit.
571  * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
572  * (default 16) rd device on module load, user can further
573  * extend brd device by create dev node themselves and have
574  * kernel automatically instantiate actual device on-demand.
575  */
576 
577  part_shift = 0;
578  if (max_part > 0) {
579  part_shift = fls(max_part);
580 
581  /*
582  * Adjust max_part according to part_shift as it is exported
583  * to user space so that user can decide correct minor number
584  * if [s]he want to create more devices.
585  *
586  * Note that -1 is required because partition 0 is reserved
587  * for the whole disk.
588  */
589  max_part = (1UL << part_shift) - 1;
590  }
591 
592  if ((1UL << part_shift) > DISK_MAX_PARTS)
593  return -EINVAL;
594 
595  if (rd_nr > 1UL << (MINORBITS - part_shift))
596  return -EINVAL;
597 
598  if (rd_nr) {
599  nr = rd_nr;
600  range = rd_nr << part_shift;
601  } else {
602  nr = CONFIG_BLK_DEV_RAM_COUNT;
603  range = 1UL << MINORBITS;
604  }
605 
606  if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
607  return -EIO;
608 
609  for (i = 0; i < nr; i++) {
610  brd = brd_alloc(i);
611  if (!brd)
612  goto out_free;
613  list_add_tail(&brd->brd_list, &brd_devices);
614  }
615 
616  /* point of no return */
617 
618  list_for_each_entry(brd, &brd_devices, brd_list)
619  add_disk(brd->brd_disk);
620 
622  THIS_MODULE, brd_probe, NULL, NULL);
623 
624  printk(KERN_INFO "brd: module loaded\n");
625  return 0;
626 
627 out_free:
628  list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
629  list_del(&brd->brd_list);
630  brd_free(brd);
631  }
632  unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
633 
634  return -ENOMEM;
635 }
636 
637 static void __exit brd_exit(void)
638 {
639  unsigned long range;
640  struct brd_device *brd, *next;
641 
642  range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
643 
644  list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
645  brd_del_one(brd);
646 
648  unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
649 }
650 
651 module_init(brd_init);
652 module_exit(brd_exit);
653