Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bte.h
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2000-2007 Silicon Graphics, Inc. All Rights Reserved.
7  */
8 
9 
10 #ifndef _ASM_IA64_SN_BTE_H
11 #define _ASM_IA64_SN_BTE_H
12 
13 #include <linux/timer.h>
14 #include <linux/spinlock.h>
15 #include <linux/cache.h>
16 #include <asm/sn/pda.h>
17 #include <asm/sn/types.h>
18 #include <asm/sn/shub_mmr.h>
19 
20 #define IBCT_NOTIFY (0x1UL << 4)
21 #define IBCT_ZFIL_MODE (0x1UL << 0)
22 
23 /* #define BTE_DEBUG */
24 /* #define BTE_DEBUG_VERBOSE */
25 
26 #ifdef BTE_DEBUG
27 # define BTE_PRINTK(x) printk x /* Terse */
28 # ifdef BTE_DEBUG_VERBOSE
29 # define BTE_PRINTKV(x) printk x /* Verbose */
30 # else
31 # define BTE_PRINTKV(x)
32 # endif /* BTE_DEBUG_VERBOSE */
33 #else
34 # define BTE_PRINTK(x)
35 # define BTE_PRINTKV(x)
36 #endif /* BTE_DEBUG */
37 
38 
39 /* BTE status register only supports 16 bits for length field */
40 #define BTE_LEN_BITS (16)
41 #define BTE_LEN_MASK ((1 << BTE_LEN_BITS) - 1)
42 #define BTE_MAX_XFER (BTE_LEN_MASK << L1_CACHE_SHIFT)
43 
44 
45 /* Define hardware */
46 #define BTES_PER_NODE (is_shub2() ? 4 : 2)
47 #define MAX_BTES_PER_NODE 4
48 
49 #define BTE2OFF_CTRL 0
50 #define BTE2OFF_SRC (SH2_BT_ENG_SRC_ADDR_0 - SH2_BT_ENG_CSR_0)
51 #define BTE2OFF_DEST (SH2_BT_ENG_DEST_ADDR_0 - SH2_BT_ENG_CSR_0)
52 #define BTE2OFF_NOTIFY (SH2_BT_ENG_NOTIF_ADDR_0 - SH2_BT_ENG_CSR_0)
53 
54 #define BTE_BASE_ADDR(interface) \
55  (is_shub2() ? (interface == 0) ? SH2_BT_ENG_CSR_0 : \
56  (interface == 1) ? SH2_BT_ENG_CSR_1 : \
57  (interface == 2) ? SH2_BT_ENG_CSR_2 : \
58  SH2_BT_ENG_CSR_3 \
59  : (interface == 0) ? IIO_IBLS0 : IIO_IBLS1)
60 
61 #define BTE_SOURCE_ADDR(base) \
62  (is_shub2() ? base + (BTE2OFF_SRC/8) \
63  : base + (BTEOFF_SRC/8))
64 
65 #define BTE_DEST_ADDR(base) \
66  (is_shub2() ? base + (BTE2OFF_DEST/8) \
67  : base + (BTEOFF_DEST/8))
68 
69 #define BTE_CTRL_ADDR(base) \
70  (is_shub2() ? base + (BTE2OFF_CTRL/8) \
71  : base + (BTEOFF_CTRL/8))
72 
73 #define BTE_NOTIF_ADDR(base) \
74  (is_shub2() ? base + (BTE2OFF_NOTIFY/8) \
75  : base + (BTEOFF_NOTIFY/8))
76 
77 /* Define hardware modes */
78 #define BTE_NOTIFY IBCT_NOTIFY
79 #define BTE_NORMAL BTE_NOTIFY
80 #define BTE_ZERO_FILL (BTE_NOTIFY | IBCT_ZFIL_MODE)
81 /* Use a reserved bit to let the caller specify a wait for any BTE */
82 #define BTE_WACQUIRE 0x4000
83 /* Use the BTE on the node with the destination memory */
84 #define BTE_USE_DEST (BTE_WACQUIRE << 1)
85 /* Use any available BTE interface on any node for the transfer */
86 #define BTE_USE_ANY (BTE_USE_DEST << 1)
87 /* macro to force the IBCT0 value valid */
88 #define BTE_VALID_MODE(x) ((x) & (IBCT_NOTIFY | IBCT_ZFIL_MODE))
89 
90 #define BTE_ACTIVE (IBLS_BUSY | IBLS_ERROR)
91 #define BTE_WORD_AVAILABLE (IBLS_BUSY << 1)
92 #define BTE_WORD_BUSY (~BTE_WORD_AVAILABLE)
93 
94 /*
95  * Some macros to simplify reading.
96  * Start with macros to locate the BTE control registers.
97  */
98 #define BTE_LNSTAT_LOAD(_bte) \
99  HUB_L(_bte->bte_base_addr)
100 #define BTE_LNSTAT_STORE(_bte, _x) \
101  HUB_S(_bte->bte_base_addr, (_x))
102 #define BTE_SRC_STORE(_bte, _x) \
103 ({ \
104  u64 __addr = ((_x) & ~AS_MASK); \
105  if (is_shub2()) \
106  __addr = SH2_TIO_PHYS_TO_DMA(__addr); \
107  HUB_S(_bte->bte_source_addr, __addr); \
108 })
109 #define BTE_DEST_STORE(_bte, _x) \
110 ({ \
111  u64 __addr = ((_x) & ~AS_MASK); \
112  if (is_shub2()) \
113  __addr = SH2_TIO_PHYS_TO_DMA(__addr); \
114  HUB_S(_bte->bte_destination_addr, __addr); \
115 })
116 #define BTE_CTRL_STORE(_bte, _x) \
117  HUB_S(_bte->bte_control_addr, (_x))
118 #define BTE_NOTIF_STORE(_bte, _x) \
119 ({ \
120  u64 __addr = ia64_tpa((_x) & ~AS_MASK); \
121  if (is_shub2()) \
122  __addr = SH2_TIO_PHYS_TO_DMA(__addr); \
123  HUB_S(_bte->bte_notify_addr, __addr); \
124 })
125 
126 #define BTE_START_TRANSFER(_bte, _len, _mode) \
127  is_shub2() ? BTE_CTRL_STORE(_bte, IBLS_BUSY | (_mode << 24) | _len) \
128  : BTE_LNSTAT_STORE(_bte, _len); \
129  BTE_CTRL_STORE(_bte, _mode)
130 
131 /* Possible results from bte_copy and bte_unaligned_copy */
132 /* The following error codes map into the BTE hardware codes
133  * IIO_ICRB_ECODE_* (in shubio.h). The hardware uses
134  * an error code of 0 (IIO_ICRB_ECODE_DERR), but we want zero
135  * to mean BTE_SUCCESS, so add one (BTEFAIL_OFFSET) to the error
136  * codes to give the following error codes.
137  */
138 #define BTEFAIL_OFFSET 1
139 
140 typedef enum {
141  BTE_SUCCESS, /* 0 is success */
142  BTEFAIL_DIR, /* Directory error due to IIO access*/
143  BTEFAIL_POISON, /* poison error on IO access (write to poison page) */
144  BTEFAIL_WERR, /* Write error (ie WINV to a Read only line) */
145  BTEFAIL_ACCESS, /* access error (protection violation) */
146  BTEFAIL_PWERR, /* Partial Write Error */
147  BTEFAIL_PRERR, /* Partial Read Error */
148  BTEFAIL_TOUT, /* CRB Time out */
149  BTEFAIL_XTERR, /* Incoming xtalk pkt had error bit */
150  BTEFAIL_NOTAVAIL, /* BTE not available */
151 } bte_result_t;
152 
153 #define BTEFAIL_SH2_RESP_SHORT 0x1 /* bit 000001 */
154 #define BTEFAIL_SH2_RESP_LONG 0x2 /* bit 000010 */
155 #define BTEFAIL_SH2_RESP_DSP 0x4 /* bit 000100 */
156 #define BTEFAIL_SH2_RESP_ACCESS 0x8 /* bit 001000 */
157 #define BTEFAIL_SH2_CRB_TO 0x10 /* bit 010000 */
158 #define BTEFAIL_SH2_NACK_LIMIT 0x20 /* bit 100000 */
159 #define BTEFAIL_SH2_ALL 0x3F /* bit 111111 */
160 
161 #define BTE_ERR_BITS 0x3FUL
162 #define BTE_ERR_SHIFT 36
163 #define BTE_ERR_MASK (BTE_ERR_BITS << BTE_ERR_SHIFT)
164 
165 #define BTE_ERROR_RETRY(value) \
166  (is_shub2() ? (value != BTEFAIL_SH2_CRB_TO) \
167  : (value != BTEFAIL_TOUT))
168 
169 /*
170  * On shub1 BTE_ERR_MASK will always be false, so no need for is_shub2()
171  */
172 #define BTE_SHUB2_ERROR(_status) \
173  ((_status & BTE_ERR_MASK) \
174  ? (((_status >> BTE_ERR_SHIFT) & BTE_ERR_BITS) | IBLS_ERROR) \
175  : _status)
176 
177 #define BTE_GET_ERROR_STATUS(_status) \
178  (BTE_SHUB2_ERROR(_status) & ~IBLS_ERROR)
179 
180 #define BTE_VALID_SH2_ERROR(value) \
181  ((value >= BTEFAIL_SH2_RESP_SHORT) && (value <= BTEFAIL_SH2_ALL))
182 
183 /*
184  * Structure defining a bte. An instance of this
185  * structure is created in the nodepda for each
186  * bte on that node (as defined by BTES_PER_NODE)
187  * This structure contains everything necessary
188  * to work with a BTE.
189  */
190 struct bteinfo_s {
192  u64 *bte_base_addr ____cacheline_aligned;
198  cnodeid_t bte_cnode; /* cnode */
199  int bte_error_count; /* Number of errors encountered */
200  int bte_num; /* 0 --> BTE0, 1 --> BTE1 */
201  int cleanup_active; /* Interface is locked for cleanup */
202  volatile bte_result_t bh_error; /* error while processing */
203  volatile u64 *most_rcnt_na;
205 };
206 
207 
208 /*
209  * Function prototypes (functions defined in bte.c, used elsewhere)
210  */
211 extern bte_result_t bte_copy(u64, u64, u64, u64, void *);
213 extern void bte_error_handler(unsigned long);
214 
215 #define bte_zero(dest, len, mode, notification) \
216  bte_copy(0, dest, len, ((mode) | BTE_ZERO_FILL), notification)
217 
218 /*
219  * The following is the preferred way of calling bte_unaligned_copy
220  * If the copy is fully cache line aligned, then bte_copy is
221  * used instead. Since bte_copy is inlined, this saves a call
222  * stack. NOTE: bte_copy is called synchronously and does block
223  * until the transfer is complete. In order to get the asynch
224  * version of bte_copy, you must perform this check yourself.
225  */
226 #define BTE_UNALIGNED_COPY(src, dest, len, mode) \
227  (((len & (L1_CACHE_BYTES - 1)) || \
228  (src & (L1_CACHE_BYTES - 1)) || \
229  (dest & (L1_CACHE_BYTES - 1))) ? \
230  bte_unaligned_copy(src, dest, len, mode) : \
231  bte_copy(src, dest, len, mode, NULL))
232 
233 
234 #endif /* _ASM_IA64_SN_BTE_H */