Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
builtin-sched.c
Go to the documentation of this file.
1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
16 
17 #include "util/debug.h"
18 
19 #include <sys/prctl.h>
20 #include <sys/resource.h>
21 
22 #include <semaphore.h>
23 #include <pthread.h>
24 #include <math.h>
25 
26 #define PR_SET_NAME 15 /* Set process name */
27 #define MAX_CPUS 4096
28 #define COMM_LEN 20
29 #define SYM_LEN 129
30 #define MAX_PID 65536
31 
32 struct sched_atom;
33 
34 struct task_desc {
35  unsigned long nr;
36  unsigned long pid;
37  char comm[COMM_LEN];
38 
39  unsigned long nr_events;
40  unsigned long curr_event;
41  struct sched_atom **atoms;
42 
43  pthread_t thread;
44  sem_t sleep_sem;
45 
48 
50 };
51 
57 };
58 
59 struct sched_atom {
64  unsigned long nr;
65  sem_t *wait_sem;
66  struct task_desc *wakee;
67 };
68 
69 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
70 
76 };
77 
78 struct work_atom {
79  struct list_head list;
85 };
86 
87 struct work_atoms {
89  struct thread *thread;
90  struct rb_node node;
96 };
97 
98 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
99 
100 struct perf_sched;
101 
103  int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
104  struct perf_sample *sample, struct machine *machine);
105 
106  int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
107  struct perf_sample *sample, struct machine *machine);
108 
109  int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110  struct perf_sample *sample, struct machine *machine);
111 
112  int (*fork_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113  struct perf_sample *sample);
114 
116  struct perf_evsel *evsel,
117  struct perf_sample *sample,
118  struct machine *machine);
119 };
120 
121 struct perf_sched {
122  struct perf_tool tool;
123  const char *input_name;
124  const char *sort_order;
125  unsigned long nr_tasks;
127  struct task_desc **tasks;
129  pthread_mutex_t start_work_mutex;
130  pthread_mutex_t work_done_wait_mutex;
132 /*
133  * Track the current task - that way we can know whether there's any
134  * weird events, such as a task being switched away that is not current.
135  */
136  int max_cpu;
141  unsigned int replay_repeat;
142  unsigned long nr_run_events;
143  unsigned long nr_sleep_events;
144  unsigned long nr_wakeup_events;
145  unsigned long nr_sleep_corrections;
146  unsigned long nr_run_events_optimized;
147  unsigned long targetless_wakeups;
148  unsigned long multitarget_wakeups;
149  unsigned long nr_runs;
150  unsigned long nr_timestamps;
151  unsigned long nr_unordered_timestamps;
152  unsigned long nr_state_machine_bugs;
153  unsigned long nr_context_switch_bugs;
154  unsigned long nr_events;
155  unsigned long nr_lost_chunks;
156  unsigned long nr_lost_events;
170  struct rb_root atom_root, sorted_atom_root;
171  struct list_head sort_list, cmp_pid;
172 };
173 
174 static u64 get_nsecs(void)
175 {
176  struct timespec ts;
177 
179 
180  return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
181 }
182 
183 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
184 {
185  u64 T0 = get_nsecs(), T1;
186 
187  do {
188  T1 = get_nsecs();
189  } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
190 }
191 
192 static void sleep_nsecs(u64 nsecs)
193 {
194  struct timespec ts;
195 
196  ts.tv_nsec = nsecs % 999999999;
197  ts.tv_sec = nsecs / 999999999;
198 
199  nanosleep(&ts, NULL);
200 }
201 
202 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
203 {
204  u64 T0, T1, delta, min_delta = 1000000000ULL;
205  int i;
206 
207  for (i = 0; i < 10; i++) {
208  T0 = get_nsecs();
209  burn_nsecs(sched, 0);
210  T1 = get_nsecs();
211  delta = T1-T0;
212  min_delta = min(min_delta, delta);
213  }
214  sched->run_measurement_overhead = min_delta;
215 
216  printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
217 }
218 
219 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
220 {
221  u64 T0, T1, delta, min_delta = 1000000000ULL;
222  int i;
223 
224  for (i = 0; i < 10; i++) {
225  T0 = get_nsecs();
226  sleep_nsecs(10000);
227  T1 = get_nsecs();
228  delta = T1-T0;
229  min_delta = min(min_delta, delta);
230  }
231  min_delta -= 10000;
232  sched->sleep_measurement_overhead = min_delta;
233 
234  printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
235 }
236 
237 static struct sched_atom *
238 get_new_event(struct task_desc *task, u64 timestamp)
239 {
240  struct sched_atom *event = zalloc(sizeof(*event));
241  unsigned long idx = task->nr_events;
242  size_t size;
243 
244  event->timestamp = timestamp;
245  event->nr = idx;
246 
247  task->nr_events++;
248  size = sizeof(struct sched_atom *) * task->nr_events;
249  task->atoms = realloc(task->atoms, size);
250  BUG_ON(!task->atoms);
251 
252  task->atoms[idx] = event;
253 
254  return event;
255 }
256 
257 static struct sched_atom *last_event(struct task_desc *task)
258 {
259  if (!task->nr_events)
260  return NULL;
261 
262  return task->atoms[task->nr_events - 1];
263 }
264 
265 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
266  u64 timestamp, u64 duration)
267 {
268  struct sched_atom *event, *curr_event = last_event(task);
269 
270  /*
271  * optimize an existing RUN event by merging this one
272  * to it:
273  */
274  if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
275  sched->nr_run_events_optimized++;
276  curr_event->duration += duration;
277  return;
278  }
279 
280  event = get_new_event(task, timestamp);
281 
282  event->type = SCHED_EVENT_RUN;
283  event->duration = duration;
284 
285  sched->nr_run_events++;
286 }
287 
288 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
289  u64 timestamp, struct task_desc *wakee)
290 {
291  struct sched_atom *event, *wakee_event;
292 
293  event = get_new_event(task, timestamp);
294  event->type = SCHED_EVENT_WAKEUP;
295  event->wakee = wakee;
296 
297  wakee_event = last_event(wakee);
298  if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
299  sched->targetless_wakeups++;
300  return;
301  }
302  if (wakee_event->wait_sem) {
303  sched->multitarget_wakeups++;
304  return;
305  }
306 
307  wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
308  sem_init(wakee_event->wait_sem, 0, 0);
309  wakee_event->specific_wait = 1;
310  event->wait_sem = wakee_event->wait_sem;
311 
312  sched->nr_wakeup_events++;
313 }
314 
315 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
316  u64 timestamp, u64 task_state __maybe_unused)
317 {
318  struct sched_atom *event = get_new_event(task, timestamp);
319 
320  event->type = SCHED_EVENT_SLEEP;
321 
322  sched->nr_sleep_events++;
323 }
324 
325 static struct task_desc *register_pid(struct perf_sched *sched,
326  unsigned long pid, const char *comm)
327 {
328  struct task_desc *task;
329 
330  BUG_ON(pid >= MAX_PID);
331 
332  task = sched->pid_to_task[pid];
333 
334  if (task)
335  return task;
336 
337  task = zalloc(sizeof(*task));
338  task->pid = pid;
339  task->nr = sched->nr_tasks;
340  strcpy(task->comm, comm);
341  /*
342  * every task starts in sleeping state - this gets ignored
343  * if there's no wakeup pointing to this sleep state:
344  */
345  add_sched_event_sleep(sched, task, 0, 0);
346 
347  sched->pid_to_task[pid] = task;
348  sched->nr_tasks++;
349  sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_task *));
350  BUG_ON(!sched->tasks);
351  sched->tasks[task->nr] = task;
352 
353  if (verbose)
354  printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
355 
356  return task;
357 }
358 
359 
360 static void print_task_traces(struct perf_sched *sched)
361 {
362  struct task_desc *task;
363  unsigned long i;
364 
365  for (i = 0; i < sched->nr_tasks; i++) {
366  task = sched->tasks[i];
367  printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
368  task->nr, task->comm, task->pid, task->nr_events);
369  }
370 }
371 
372 static void add_cross_task_wakeups(struct perf_sched *sched)
373 {
374  struct task_desc *task1, *task2;
375  unsigned long i, j;
376 
377  for (i = 0; i < sched->nr_tasks; i++) {
378  task1 = sched->tasks[i];
379  j = i + 1;
380  if (j == sched->nr_tasks)
381  j = 0;
382  task2 = sched->tasks[j];
383  add_sched_event_wakeup(sched, task1, 0, task2);
384  }
385 }
386 
387 static void perf_sched__process_event(struct perf_sched *sched,
388  struct sched_atom *atom)
389 {
390  int ret = 0;
391 
392  switch (atom->type) {
393  case SCHED_EVENT_RUN:
394  burn_nsecs(sched, atom->duration);
395  break;
396  case SCHED_EVENT_SLEEP:
397  if (atom->wait_sem)
398  ret = sem_wait(atom->wait_sem);
399  BUG_ON(ret);
400  break;
401  case SCHED_EVENT_WAKEUP:
402  if (atom->wait_sem)
403  ret = sem_post(atom->wait_sem);
404  BUG_ON(ret);
405  break;
407  break;
408  default:
409  BUG_ON(1);
410  }
411 }
412 
413 static u64 get_cpu_usage_nsec_parent(void)
414 {
415  struct rusage ru;
416  u64 sum;
417  int err;
418 
419  err = getrusage(RUSAGE_SELF, &ru);
420  BUG_ON(err);
421 
422  sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
423  sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
424 
425  return sum;
426 }
427 
428 static int self_open_counters(void)
429 {
430  struct perf_event_attr attr;
431  int fd;
432 
433  memset(&attr, 0, sizeof(attr));
434 
435  attr.type = PERF_TYPE_SOFTWARE;
437 
438  fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
439 
440  if (fd < 0)
441  pr_err("Error: sys_perf_event_open() syscall returned "
442  "with %d (%s)\n", fd, strerror(errno));
443  return fd;
444 }
445 
446 static u64 get_cpu_usage_nsec_self(int fd)
447 {
448  u64 runtime;
449  int ret;
450 
451  ret = read(fd, &runtime, sizeof(runtime));
452  BUG_ON(ret != sizeof(runtime));
453 
454  return runtime;
455 }
456 
458  struct task_desc *task;
459  struct perf_sched *sched;
460 };
461 
462 static void *thread_func(void *ctx)
463 {
464  struct sched_thread_parms *parms = ctx;
465  struct task_desc *this_task = parms->task;
466  struct perf_sched *sched = parms->sched;
467  u64 cpu_usage_0, cpu_usage_1;
468  unsigned long i, ret;
469  char comm2[22];
470  int fd;
471 
472  free(parms);
473 
474  sprintf(comm2, ":%s", this_task->comm);
475  prctl(PR_SET_NAME, comm2);
476  fd = self_open_counters();
477  if (fd < 0)
478  return NULL;
479 again:
480  ret = sem_post(&this_task->ready_for_work);
481  BUG_ON(ret);
482  ret = pthread_mutex_lock(&sched->start_work_mutex);
483  BUG_ON(ret);
484  ret = pthread_mutex_unlock(&sched->start_work_mutex);
485  BUG_ON(ret);
486 
487  cpu_usage_0 = get_cpu_usage_nsec_self(fd);
488 
489  for (i = 0; i < this_task->nr_events; i++) {
490  this_task->curr_event = i;
491  perf_sched__process_event(sched, this_task->atoms[i]);
492  }
493 
494  cpu_usage_1 = get_cpu_usage_nsec_self(fd);
495  this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
496  ret = sem_post(&this_task->work_done_sem);
497  BUG_ON(ret);
498 
499  ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
500  BUG_ON(ret);
501  ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
502  BUG_ON(ret);
503 
504  goto again;
505 }
506 
507 static void create_tasks(struct perf_sched *sched)
508 {
509  struct task_desc *task;
510  pthread_attr_t attr;
511  unsigned long i;
512  int err;
513 
514  err = pthread_attr_init(&attr);
515  BUG_ON(err);
516  err = pthread_attr_setstacksize(&attr,
517  (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
518  BUG_ON(err);
519  err = pthread_mutex_lock(&sched->start_work_mutex);
520  BUG_ON(err);
521  err = pthread_mutex_lock(&sched->work_done_wait_mutex);
522  BUG_ON(err);
523  for (i = 0; i < sched->nr_tasks; i++) {
524  struct sched_thread_parms *parms = malloc(sizeof(*parms));
525  BUG_ON(parms == NULL);
526  parms->task = task = sched->tasks[i];
527  parms->sched = sched;
528  sem_init(&task->sleep_sem, 0, 0);
529  sem_init(&task->ready_for_work, 0, 0);
530  sem_init(&task->work_done_sem, 0, 0);
531  task->curr_event = 0;
532  err = pthread_create(&task->thread, &attr, thread_func, parms);
533  BUG_ON(err);
534  }
535 }
536 
537 static void wait_for_tasks(struct perf_sched *sched)
538 {
539  u64 cpu_usage_0, cpu_usage_1;
540  struct task_desc *task;
541  unsigned long i, ret;
542 
543  sched->start_time = get_nsecs();
544  sched->cpu_usage = 0;
545  pthread_mutex_unlock(&sched->work_done_wait_mutex);
546 
547  for (i = 0; i < sched->nr_tasks; i++) {
548  task = sched->tasks[i];
549  ret = sem_wait(&task->ready_for_work);
550  BUG_ON(ret);
551  sem_init(&task->ready_for_work, 0, 0);
552  }
553  ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
554  BUG_ON(ret);
555 
556  cpu_usage_0 = get_cpu_usage_nsec_parent();
557 
558  pthread_mutex_unlock(&sched->start_work_mutex);
559 
560  for (i = 0; i < sched->nr_tasks; i++) {
561  task = sched->tasks[i];
562  ret = sem_wait(&task->work_done_sem);
563  BUG_ON(ret);
564  sem_init(&task->work_done_sem, 0, 0);
565  sched->cpu_usage += task->cpu_usage;
566  task->cpu_usage = 0;
567  }
568 
569  cpu_usage_1 = get_cpu_usage_nsec_parent();
570  if (!sched->runavg_cpu_usage)
571  sched->runavg_cpu_usage = sched->cpu_usage;
572  sched->runavg_cpu_usage = (sched->runavg_cpu_usage * 9 + sched->cpu_usage) / 10;
573 
574  sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
575  if (!sched->runavg_parent_cpu_usage)
577  sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * 9 +
578  sched->parent_cpu_usage)/10;
579 
580  ret = pthread_mutex_lock(&sched->start_work_mutex);
581  BUG_ON(ret);
582 
583  for (i = 0; i < sched->nr_tasks; i++) {
584  task = sched->tasks[i];
585  sem_init(&task->sleep_sem, 0, 0);
586  task->curr_event = 0;
587  }
588 }
589 
590 static void run_one_test(struct perf_sched *sched)
591 {
592  u64 T0, T1, delta, avg_delta, fluct;
593 
594  T0 = get_nsecs();
595  wait_for_tasks(sched);
596  T1 = get_nsecs();
597 
598  delta = T1 - T0;
599  sched->sum_runtime += delta;
600  sched->nr_runs++;
601 
602  avg_delta = sched->sum_runtime / sched->nr_runs;
603  if (delta < avg_delta)
604  fluct = avg_delta - delta;
605  else
606  fluct = delta - avg_delta;
607  sched->sum_fluct += fluct;
608  if (!sched->run_avg)
609  sched->run_avg = delta;
610  sched->run_avg = (sched->run_avg * 9 + delta) / 10;
611 
612  printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0);
613 
614  printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6);
615 
616  printf("cpu: %0.2f / %0.2f",
617  (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6);
618 
619 #if 0
620  /*
621  * rusage statistics done by the parent, these are less
622  * accurate than the sched->sum_exec_runtime based statistics:
623  */
624  printf(" [%0.2f / %0.2f]",
625  (double)sched->parent_cpu_usage/1e6,
626  (double)sched->runavg_parent_cpu_usage/1e6);
627 #endif
628 
629  printf("\n");
630 
631  if (sched->nr_sleep_corrections)
632  printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
633  sched->nr_sleep_corrections = 0;
634 }
635 
636 static void test_calibrations(struct perf_sched *sched)
637 {
638  u64 T0, T1;
639 
640  T0 = get_nsecs();
641  burn_nsecs(sched, 1e6);
642  T1 = get_nsecs();
643 
644  printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
645 
646  T0 = get_nsecs();
647  sleep_nsecs(1e6);
648  T1 = get_nsecs();
649 
650  printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
651 }
652 
653 static int
654 replay_wakeup_event(struct perf_sched *sched,
655  struct perf_evsel *evsel, struct perf_sample *sample,
657 {
658  const char *comm = perf_evsel__strval(evsel, sample, "comm");
659  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
660  struct task_desc *waker, *wakee;
661 
662  if (verbose) {
663  printf("sched_wakeup event %p\n", evsel);
664 
665  printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
666  }
667 
668  waker = register_pid(sched, sample->tid, "<unknown>");
669  wakee = register_pid(sched, pid, comm);
670 
671  add_sched_event_wakeup(sched, waker, sample->time, wakee);
672  return 0;
673 }
674 
675 static int replay_switch_event(struct perf_sched *sched,
676  struct perf_evsel *evsel,
677  struct perf_sample *sample,
678  struct machine *machine __maybe_unused)
679 {
680  const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
681  *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
682  const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
683  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
684  const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
685  struct task_desc *prev, __maybe_unused *next;
686  u64 timestamp0, timestamp = sample->time;
687  int cpu = sample->cpu;
688  s64 delta;
689 
690  if (verbose)
691  printf("sched_switch event %p\n", evsel);
692 
693  if (cpu >= MAX_CPUS || cpu < 0)
694  return 0;
695 
696  timestamp0 = sched->cpu_last_switched[cpu];
697  if (timestamp0)
698  delta = timestamp - timestamp0;
699  else
700  delta = 0;
701 
702  if (delta < 0) {
703  pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
704  return -1;
705  }
706 
707  pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
708  prev_comm, prev_pid, next_comm, next_pid, delta);
709 
710  prev = register_pid(sched, prev_pid, prev_comm);
711  next = register_pid(sched, next_pid, next_comm);
712 
713  sched->cpu_last_switched[cpu] = timestamp;
714 
715  add_sched_event_run(sched, prev, timestamp, delta);
716  add_sched_event_sleep(sched, prev, timestamp, prev_state);
717 
718  return 0;
719 }
720 
721 static int replay_fork_event(struct perf_sched *sched, struct perf_evsel *evsel,
722  struct perf_sample *sample)
723 {
724  const char *parent_comm = perf_evsel__strval(evsel, sample, "parent_comm"),
725  *child_comm = perf_evsel__strval(evsel, sample, "child_comm");
726  const u32 parent_pid = perf_evsel__intval(evsel, sample, "parent_pid"),
727  child_pid = perf_evsel__intval(evsel, sample, "child_pid");
728 
729  if (verbose) {
730  printf("sched_fork event %p\n", evsel);
731  printf("... parent: %s/%d\n", parent_comm, parent_pid);
732  printf("... child: %s/%d\n", child_comm, child_pid);
733  }
734 
735  register_pid(sched, parent_pid, parent_comm);
736  register_pid(sched, child_pid, child_comm);
737  return 0;
738 }
739 
740 struct sort_dimension {
741  const char *name;
742  sort_fn_t cmp;
743  struct list_head list;
744 };
745 
746 static int
747 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
748 {
749  struct sort_dimension *sort;
750  int ret = 0;
751 
752  BUG_ON(list_empty(list));
753 
754  list_for_each_entry(sort, list, list) {
755  ret = sort->cmp(l, r);
756  if (ret)
757  return ret;
758  }
759 
760  return ret;
761 }
762 
763 static struct work_atoms *
764 thread_atoms_search(struct rb_root *root, struct thread *thread,
765  struct list_head *sort_list)
766 {
767  struct rb_node *node = root->rb_node;
768  struct work_atoms key = { .thread = thread };
769 
770  while (node) {
771  struct work_atoms *atoms;
772  int cmp;
773 
774  atoms = container_of(node, struct work_atoms, node);
775 
776  cmp = thread_lat_cmp(sort_list, &key, atoms);
777  if (cmp > 0)
778  node = node->rb_left;
779  else if (cmp < 0)
780  node = node->rb_right;
781  else {
782  BUG_ON(thread != atoms->thread);
783  return atoms;
784  }
785  }
786  return NULL;
787 }
788 
789 static void
790 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
791  struct list_head *sort_list)
792 {
793  struct rb_node **new = &(root->rb_node), *parent = NULL;
794 
795  while (*new) {
796  struct work_atoms *this;
797  int cmp;
798 
799  this = container_of(*new, struct work_atoms, node);
800  parent = *new;
801 
802  cmp = thread_lat_cmp(sort_list, data, this);
803 
804  if (cmp > 0)
805  new = &((*new)->rb_left);
806  else
807  new = &((*new)->rb_right);
808  }
809 
810  rb_link_node(&data->node, parent, new);
811  rb_insert_color(&data->node, root);
812 }
813 
814 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
815 {
816  struct work_atoms *atoms = zalloc(sizeof(*atoms));
817  if (!atoms) {
818  pr_err("No memory at %s\n", __func__);
819  return -1;
820  }
821 
822  atoms->thread = thread;
823  INIT_LIST_HEAD(&atoms->work_list);
824  __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
825  return 0;
826 }
827 
828 static int latency_fork_event(struct perf_sched *sched __maybe_unused,
829  struct perf_evsel *evsel __maybe_unused,
830  struct perf_sample *sample __maybe_unused)
831 {
832  /* should insert the newcomer */
833  return 0;
834 }
835 
836 static char sched_out_state(u64 prev_state)
837 {
838  const char *str = TASK_STATE_TO_CHAR_STR;
839 
840  return str[prev_state];
841 }
842 
843 static int
844 add_sched_out_event(struct work_atoms *atoms,
845  char run_state,
846  u64 timestamp)
847 {
848  struct work_atom *atom = zalloc(sizeof(*atom));
849  if (!atom) {
850  pr_err("Non memory at %s", __func__);
851  return -1;
852  }
853 
854  atom->sched_out_time = timestamp;
855 
856  if (run_state == 'R') {
857  atom->state = THREAD_WAIT_CPU;
858  atom->wake_up_time = atom->sched_out_time;
859  }
860 
861  list_add_tail(&atom->list, &atoms->work_list);
862  return 0;
863 }
864 
865 static void
866 add_runtime_event(struct work_atoms *atoms, u64 delta,
867  u64 timestamp __maybe_unused)
868 {
869  struct work_atom *atom;
870 
871  BUG_ON(list_empty(&atoms->work_list));
872 
873  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
874 
875  atom->runtime += delta;
876  atoms->total_runtime += delta;
877 }
878 
879 static void
880 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
881 {
882  struct work_atom *atom;
883  u64 delta;
884 
885  if (list_empty(&atoms->work_list))
886  return;
887 
888  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
889 
890  if (atom->state != THREAD_WAIT_CPU)
891  return;
892 
894  atom->state = THREAD_IGNORE;
895  return;
896  }
897 
898  atom->state = THREAD_SCHED_IN;
899  atom->sched_in_time = timestamp;
900 
901  delta = atom->sched_in_time - atom->wake_up_time;
902  atoms->total_lat += delta;
903  if (delta > atoms->max_lat) {
904  atoms->max_lat = delta;
905  atoms->max_lat_at = timestamp;
906  }
907  atoms->nb_atoms++;
908 }
909 
910 static int latency_switch_event(struct perf_sched *sched,
911  struct perf_evsel *evsel,
912  struct perf_sample *sample,
913  struct machine *machine)
914 {
915  const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
916  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
917  const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
918  struct work_atoms *out_events, *in_events;
919  struct thread *sched_out, *sched_in;
920  u64 timestamp0, timestamp = sample->time;
921  int cpu = sample->cpu;
922  s64 delta;
923 
924  BUG_ON(cpu >= MAX_CPUS || cpu < 0);
925 
926  timestamp0 = sched->cpu_last_switched[cpu];
927  sched->cpu_last_switched[cpu] = timestamp;
928  if (timestamp0)
929  delta = timestamp - timestamp0;
930  else
931  delta = 0;
932 
933  if (delta < 0) {
934  pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
935  return -1;
936  }
937 
938  sched_out = machine__findnew_thread(machine, prev_pid);
939  sched_in = machine__findnew_thread(machine, next_pid);
940 
941  out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
942  if (!out_events) {
943  if (thread_atoms_insert(sched, sched_out))
944  return -1;
945  out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
946  if (!out_events) {
947  pr_err("out-event: Internal tree error");
948  return -1;
949  }
950  }
951  if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
952  return -1;
953 
954  in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
955  if (!in_events) {
956  if (thread_atoms_insert(sched, sched_in))
957  return -1;
958  in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
959  if (!in_events) {
960  pr_err("in-event: Internal tree error");
961  return -1;
962  }
963  /*
964  * Take came in we have not heard about yet,
965  * add in an initial atom in runnable state:
966  */
967  if (add_sched_out_event(in_events, 'R', timestamp))
968  return -1;
969  }
970  add_sched_in_event(in_events, timestamp);
971 
972  return 0;
973 }
974 
975 static int latency_runtime_event(struct perf_sched *sched,
976  struct perf_evsel *evsel,
977  struct perf_sample *sample,
978  struct machine *machine)
979 {
980  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
981  const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
982  struct thread *thread = machine__findnew_thread(machine, pid);
983  struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
984  u64 timestamp = sample->time;
985  int cpu = sample->cpu;
986 
987  BUG_ON(cpu >= MAX_CPUS || cpu < 0);
988  if (!atoms) {
989  if (thread_atoms_insert(sched, thread))
990  return -1;
991  atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
992  if (!atoms) {
993  pr_err("in-event: Internal tree error");
994  return -1;
995  }
996  if (add_sched_out_event(atoms, 'R', timestamp))
997  return -1;
998  }
999 
1000  add_runtime_event(atoms, runtime, timestamp);
1001  return 0;
1002 }
1003 
1004 static int latency_wakeup_event(struct perf_sched *sched,
1005  struct perf_evsel *evsel,
1006  struct perf_sample *sample,
1007  struct machine *machine)
1008 {
1009  const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
1010  success = perf_evsel__intval(evsel, sample, "success");
1011  struct work_atoms *atoms;
1012  struct work_atom *atom;
1013  struct thread *wakee;
1014  u64 timestamp = sample->time;
1015 
1016  /* Note for later, it may be interesting to observe the failing cases */
1017  if (!success)
1018  return 0;
1019 
1020  wakee = machine__findnew_thread(machine, pid);
1021  atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1022  if (!atoms) {
1023  if (thread_atoms_insert(sched, wakee))
1024  return -1;
1025  atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1026  if (!atoms) {
1027  pr_err("wakeup-event: Internal tree error");
1028  return -1;
1029  }
1030  if (add_sched_out_event(atoms, 'S', timestamp))
1031  return -1;
1032  }
1033 
1034  BUG_ON(list_empty(&atoms->work_list));
1035 
1036  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1037 
1038  /*
1039  * You WILL be missing events if you've recorded only
1040  * one CPU, or are only looking at only one, so don't
1041  * make useless noise.
1042  */
1043  if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1044  sched->nr_state_machine_bugs++;
1045 
1046  sched->nr_timestamps++;
1047  if (atom->sched_out_time > timestamp) {
1048  sched->nr_unordered_timestamps++;
1049  return 0;
1050  }
1051 
1052  atom->state = THREAD_WAIT_CPU;
1053  atom->wake_up_time = timestamp;
1054  return 0;
1055 }
1056 
1057 static int latency_migrate_task_event(struct perf_sched *sched,
1058  struct perf_evsel *evsel,
1059  struct perf_sample *sample,
1060  struct machine *machine)
1061 {
1062  const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1063  u64 timestamp = sample->time;
1064  struct work_atoms *atoms;
1065  struct work_atom *atom;
1066  struct thread *migrant;
1067 
1068  /*
1069  * Only need to worry about migration when profiling one CPU.
1070  */
1071  if (sched->profile_cpu == -1)
1072  return 0;
1073 
1074  migrant = machine__findnew_thread(machine, pid);
1075  atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1076  if (!atoms) {
1077  if (thread_atoms_insert(sched, migrant))
1078  return -1;
1079  register_pid(sched, migrant->pid, migrant->comm);
1080  atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1081  if (!atoms) {
1082  pr_err("migration-event: Internal tree error");
1083  return -1;
1084  }
1085  if (add_sched_out_event(atoms, 'R', timestamp))
1086  return -1;
1087  }
1088 
1089  BUG_ON(list_empty(&atoms->work_list));
1090 
1091  atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092  atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1093 
1094  sched->nr_timestamps++;
1095 
1096  if (atom->sched_out_time > timestamp)
1097  sched->nr_unordered_timestamps++;
1098 
1099  return 0;
1100 }
1101 
1102 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1103 {
1104  int i;
1105  int ret;
1106  u64 avg;
1107 
1108  if (!work_list->nb_atoms)
1109  return;
1110  /*
1111  * Ignore idle threads:
1112  */
1113  if (!strcmp(work_list->thread->comm, "swapper"))
1114  return;
1115 
1116  sched->all_runtime += work_list->total_runtime;
1117  sched->all_count += work_list->nb_atoms;
1118 
1119  ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1120 
1121  for (i = 0; i < 24 - ret; i++)
1122  printf(" ");
1123 
1124  avg = work_list->total_lat / work_list->nb_atoms;
1125 
1126  printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1127  (double)work_list->total_runtime / 1e6,
1128  work_list->nb_atoms, (double)avg / 1e6,
1129  (double)work_list->max_lat / 1e6,
1130  (double)work_list->max_lat_at / 1e9);
1131 }
1132 
1133 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1134 {
1135  if (l->thread->pid < r->thread->pid)
1136  return -1;
1137  if (l->thread->pid > r->thread->pid)
1138  return 1;
1139 
1140  return 0;
1141 }
1142 
1143 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1144 {
1145  u64 avgl, avgr;
1146 
1147  if (!l->nb_atoms)
1148  return -1;
1149 
1150  if (!r->nb_atoms)
1151  return 1;
1152 
1153  avgl = l->total_lat / l->nb_atoms;
1154  avgr = r->total_lat / r->nb_atoms;
1155 
1156  if (avgl < avgr)
1157  return -1;
1158  if (avgl > avgr)
1159  return 1;
1160 
1161  return 0;
1162 }
1163 
1164 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1165 {
1166  if (l->max_lat < r->max_lat)
1167  return -1;
1168  if (l->max_lat > r->max_lat)
1169  return 1;
1170 
1171  return 0;
1172 }
1173 
1174 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1175 {
1176  if (l->nb_atoms < r->nb_atoms)
1177  return -1;
1178  if (l->nb_atoms > r->nb_atoms)
1179  return 1;
1180 
1181  return 0;
1182 }
1183 
1184 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1185 {
1186  if (l->total_runtime < r->total_runtime)
1187  return -1;
1188  if (l->total_runtime > r->total_runtime)
1189  return 1;
1190 
1191  return 0;
1192 }
1193 
1194 static int sort_dimension__add(const char *tok, struct list_head *list)
1195 {
1196  size_t i;
1197  static struct sort_dimension avg_sort_dimension = {
1198  .name = "avg",
1199  .cmp = avg_cmp,
1200  };
1201  static struct sort_dimension max_sort_dimension = {
1202  .name = "max",
1203  .cmp = max_cmp,
1204  };
1205  static struct sort_dimension pid_sort_dimension = {
1206  .name = "pid",
1207  .cmp = pid_cmp,
1208  };
1209  static struct sort_dimension runtime_sort_dimension = {
1210  .name = "runtime",
1211  .cmp = runtime_cmp,
1212  };
1213  static struct sort_dimension switch_sort_dimension = {
1214  .name = "switch",
1215  .cmp = switch_cmp,
1216  };
1217  struct sort_dimension *available_sorts[] = {
1218  &pid_sort_dimension,
1219  &avg_sort_dimension,
1220  &max_sort_dimension,
1221  &switch_sort_dimension,
1222  &runtime_sort_dimension,
1223  };
1224 
1225  for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1226  if (!strcmp(available_sorts[i]->name, tok)) {
1227  list_add_tail(&available_sorts[i]->list, list);
1228 
1229  return 0;
1230  }
1231  }
1232 
1233  return -1;
1234 }
1235 
1236 static void perf_sched__sort_lat(struct perf_sched *sched)
1237 {
1238  struct rb_node *node;
1239 
1240  for (;;) {
1241  struct work_atoms *data;
1242  node = rb_first(&sched->atom_root);
1243  if (!node)
1244  break;
1245 
1246  rb_erase(node, &sched->atom_root);
1247  data = rb_entry(node, struct work_atoms, node);
1248  __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1249  }
1250 }
1251 
1252 static int process_sched_wakeup_event(struct perf_tool *tool,
1253  struct perf_evsel *evsel,
1254  struct perf_sample *sample,
1255  struct machine *machine)
1256 {
1257  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1258 
1259  if (sched->tp_handler->wakeup_event)
1260  return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1261 
1262  return 0;
1263 }
1264 
1265 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1266  struct perf_sample *sample, struct machine *machine)
1267 {
1268  const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1269  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1270  struct thread *sched_out __maybe_unused, *sched_in;
1271  int new_shortname;
1272  u64 timestamp0, timestamp = sample->time;
1273  s64 delta;
1274  int cpu, this_cpu = sample->cpu;
1275 
1276  BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1277 
1278  if (this_cpu > sched->max_cpu)
1279  sched->max_cpu = this_cpu;
1280 
1281  timestamp0 = sched->cpu_last_switched[this_cpu];
1282  sched->cpu_last_switched[this_cpu] = timestamp;
1283  if (timestamp0)
1284  delta = timestamp - timestamp0;
1285  else
1286  delta = 0;
1287 
1288  if (delta < 0) {
1289  pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1290  return -1;
1291  }
1292 
1293  sched_out = machine__findnew_thread(machine, prev_pid);
1294  sched_in = machine__findnew_thread(machine, next_pid);
1295 
1296  sched->curr_thread[this_cpu] = sched_in;
1297 
1298  printf(" ");
1299 
1300  new_shortname = 0;
1301  if (!sched_in->shortname[0]) {
1302  sched_in->shortname[0] = sched->next_shortname1;
1303  sched_in->shortname[1] = sched->next_shortname2;
1304 
1305  if (sched->next_shortname1 < 'Z') {
1306  sched->next_shortname1++;
1307  } else {
1308  sched->next_shortname1='A';
1309  if (sched->next_shortname2 < '9') {
1310  sched->next_shortname2++;
1311  } else {
1312  sched->next_shortname2='0';
1313  }
1314  }
1315  new_shortname = 1;
1316  }
1317 
1318  for (cpu = 0; cpu <= sched->max_cpu; cpu++) {
1319  if (cpu != this_cpu)
1320  printf(" ");
1321  else
1322  printf("*");
1323 
1324  if (sched->curr_thread[cpu]) {
1325  if (sched->curr_thread[cpu]->pid)
1326  printf("%2s ", sched->curr_thread[cpu]->shortname);
1327  else
1328  printf(". ");
1329  } else
1330  printf(" ");
1331  }
1332 
1333  printf(" %12.6f secs ", (double)timestamp/1e9);
1334  if (new_shortname) {
1335  printf("%s => %s:%d\n",
1336  sched_in->shortname, sched_in->comm, sched_in->pid);
1337  } else {
1338  printf("\n");
1339  }
1340 
1341  return 0;
1342 }
1343 
1344 static int process_sched_switch_event(struct perf_tool *tool,
1345  struct perf_evsel *evsel,
1346  struct perf_sample *sample,
1347  struct machine *machine)
1348 {
1349  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1350  int this_cpu = sample->cpu, err = 0;
1351  u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1352  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1353 
1354  if (sched->curr_pid[this_cpu] != (u32)-1) {
1355  /*
1356  * Are we trying to switch away a PID that is
1357  * not current?
1358  */
1359  if (sched->curr_pid[this_cpu] != prev_pid)
1360  sched->nr_context_switch_bugs++;
1361  }
1362 
1363  if (sched->tp_handler->switch_event)
1364  err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1365 
1366  sched->curr_pid[this_cpu] = next_pid;
1367  return err;
1368 }
1369 
1370 static int process_sched_runtime_event(struct perf_tool *tool,
1371  struct perf_evsel *evsel,
1372  struct perf_sample *sample,
1373  struct machine *machine)
1374 {
1375  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1376 
1377  if (sched->tp_handler->runtime_event)
1378  return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1379 
1380  return 0;
1381 }
1382 
1383 static int process_sched_fork_event(struct perf_tool *tool,
1384  struct perf_evsel *evsel,
1385  struct perf_sample *sample,
1386  struct machine *machine __maybe_unused)
1387 {
1388  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1389 
1390  if (sched->tp_handler->fork_event)
1391  return sched->tp_handler->fork_event(sched, evsel, sample);
1392 
1393  return 0;
1394 }
1395 
1396 static int process_sched_exit_event(struct perf_tool *tool __maybe_unused,
1397  struct perf_evsel *evsel,
1398  struct perf_sample *sample __maybe_unused,
1399  struct machine *machine __maybe_unused)
1400 {
1401  pr_debug("sched_exit event %p\n", evsel);
1402  return 0;
1403 }
1404 
1405 static int process_sched_migrate_task_event(struct perf_tool *tool,
1406  struct perf_evsel *evsel,
1407  struct perf_sample *sample,
1408  struct machine *machine)
1409 {
1410  struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1411 
1412  if (sched->tp_handler->migrate_task_event)
1413  return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1414 
1415  return 0;
1416 }
1417 
1418 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1419  struct perf_evsel *evsel,
1420  struct perf_sample *sample,
1421  struct machine *machine);
1422 
1423 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1424  union perf_event *event __maybe_unused,
1425  struct perf_sample *sample,
1426  struct perf_evsel *evsel,
1427  struct machine *machine)
1428 {
1429  struct thread *thread = machine__findnew_thread(machine, sample->tid);
1430  int err = 0;
1431 
1432  if (thread == NULL) {
1433  pr_debug("problem processing %s event, skipping it.\n",
1434  perf_evsel__name(evsel));
1435  return -1;
1436  }
1437 
1438  evsel->hists.stats.total_period += sample->period;
1440 
1441  if (evsel->handler.func != NULL) {
1442  tracepoint_handler f = evsel->handler.func;
1443  err = f(tool, evsel, sample, machine);
1444  }
1445 
1446  return err;
1447 }
1448 
1449 static int perf_sched__read_events(struct perf_sched *sched, bool destroy,
1450  struct perf_session **psession)
1451 {
1452  const struct perf_evsel_str_handler handlers[] = {
1453  { "sched:sched_switch", process_sched_switch_event, },
1454  { "sched:sched_stat_runtime", process_sched_runtime_event, },
1455  { "sched:sched_wakeup", process_sched_wakeup_event, },
1456  { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1457  { "sched:sched_process_fork", process_sched_fork_event, },
1458  { "sched:sched_process_exit", process_sched_exit_event, },
1459  { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1460  };
1461  struct perf_session *session;
1462 
1463  session = perf_session__new(sched->input_name, O_RDONLY, 0, false, &sched->tool);
1464  if (session == NULL) {
1465  pr_debug("No Memory for session\n");
1466  return -1;
1467  }
1468 
1469  if (perf_session__set_tracepoints_handlers(session, handlers))
1470  goto out_delete;
1471 
1472  if (perf_session__has_traces(session, "record -R")) {
1473  int err = perf_session__process_events(session, &sched->tool);
1474  if (err) {
1475  pr_err("Failed to process events, error %d", err);
1476  goto out_delete;
1477  }
1478 
1479  sched->nr_events = session->hists.stats.nr_events[0];
1480  sched->nr_lost_events = session->hists.stats.total_lost;
1481  sched->nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1482  }
1483 
1484  if (destroy)
1485  perf_session__delete(session);
1486 
1487  if (psession)
1488  *psession = session;
1489 
1490  return 0;
1491 
1492 out_delete:
1493  perf_session__delete(session);
1494  return -1;
1495 }
1496 
1497 static void print_bad_events(struct perf_sched *sched)
1498 {
1499  if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1500  printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1501  (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1502  sched->nr_unordered_timestamps, sched->nr_timestamps);
1503  }
1504  if (sched->nr_lost_events && sched->nr_events) {
1505  printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1506  (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1507  sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1508  }
1509  if (sched->nr_state_machine_bugs && sched->nr_timestamps) {
1510  printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1511  (double)sched->nr_state_machine_bugs/(double)sched->nr_timestamps*100.0,
1512  sched->nr_state_machine_bugs, sched->nr_timestamps);
1513  if (sched->nr_lost_events)
1514  printf(" (due to lost events?)");
1515  printf("\n");
1516  }
1517  if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1518  printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1519  (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1520  sched->nr_context_switch_bugs, sched->nr_timestamps);
1521  if (sched->nr_lost_events)
1522  printf(" (due to lost events?)");
1523  printf("\n");
1524  }
1525 }
1526 
1527 static int perf_sched__lat(struct perf_sched *sched)
1528 {
1529  struct rb_node *next;
1530  struct perf_session *session;
1531 
1532  setup_pager();
1533  if (perf_sched__read_events(sched, false, &session))
1534  return -1;
1535  perf_sched__sort_lat(sched);
1536 
1537  printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1538  printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1539  printf(" ---------------------------------------------------------------------------------------------------------------\n");
1540 
1541  next = rb_first(&sched->sorted_atom_root);
1542 
1543  while (next) {
1544  struct work_atoms *work_list;
1545 
1546  work_list = rb_entry(next, struct work_atoms, node);
1547  output_lat_thread(sched, work_list);
1548  next = rb_next(next);
1549  }
1550 
1551  printf(" -----------------------------------------------------------------------------------------\n");
1552  printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1553  (double)sched->all_runtime / 1e6, sched->all_count);
1554 
1555  printf(" ---------------------------------------------------\n");
1556 
1557  print_bad_events(sched);
1558  printf("\n");
1559 
1560  perf_session__delete(session);
1561  return 0;
1562 }
1563 
1564 static int perf_sched__map(struct perf_sched *sched)
1565 {
1566  sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1567 
1568  setup_pager();
1569  if (perf_sched__read_events(sched, true, NULL))
1570  return -1;
1571  print_bad_events(sched);
1572  return 0;
1573 }
1574 
1575 static int perf_sched__replay(struct perf_sched *sched)
1576 {
1577  unsigned long i;
1578 
1579  calibrate_run_measurement_overhead(sched);
1580  calibrate_sleep_measurement_overhead(sched);
1581 
1582  test_calibrations(sched);
1583 
1584  if (perf_sched__read_events(sched, true, NULL))
1585  return -1;
1586 
1587  printf("nr_run_events: %ld\n", sched->nr_run_events);
1588  printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
1589  printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
1590 
1591  if (sched->targetless_wakeups)
1592  printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
1593  if (sched->multitarget_wakeups)
1594  printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1595  if (sched->nr_run_events_optimized)
1596  printf("run atoms optimized: %ld\n",
1597  sched->nr_run_events_optimized);
1598 
1599  print_task_traces(sched);
1600  add_cross_task_wakeups(sched);
1601 
1602  create_tasks(sched);
1603  printf("------------------------------------------------------------\n");
1604  for (i = 0; i < sched->replay_repeat; i++)
1605  run_one_test(sched);
1606 
1607  return 0;
1608 }
1609 
1610 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1611  const char * const usage_msg[])
1612 {
1613  char *tmp, *tok, *str = strdup(sched->sort_order);
1614 
1615  for (tok = strtok_r(str, ", ", &tmp);
1616  tok; tok = strtok_r(NULL, ", ", &tmp)) {
1617  if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1618  error("Unknown --sort key: `%s'", tok);
1619  usage_with_options(usage_msg, options);
1620  }
1621  }
1622 
1623  free(str);
1624 
1625  sort_dimension__add("pid", &sched->cmp_pid);
1626 }
1627 
1628 static int __cmd_record(int argc, const char **argv)
1629 {
1630  unsigned int rec_argc, i, j;
1631  const char **rec_argv;
1632  const char * const record_args[] = {
1633  "record",
1634  "-a",
1635  "-R",
1636  "-f",
1637  "-m", "1024",
1638  "-c", "1",
1639  "-e", "sched:sched_switch",
1640  "-e", "sched:sched_stat_wait",
1641  "-e", "sched:sched_stat_sleep",
1642  "-e", "sched:sched_stat_iowait",
1643  "-e", "sched:sched_stat_runtime",
1644  "-e", "sched:sched_process_exit",
1645  "-e", "sched:sched_process_fork",
1646  "-e", "sched:sched_wakeup",
1647  "-e", "sched:sched_migrate_task",
1648  };
1649 
1650  rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1651  rec_argv = calloc(rec_argc + 1, sizeof(char *));
1652 
1653  if (rec_argv == NULL)
1654  return -ENOMEM;
1655 
1656  for (i = 0; i < ARRAY_SIZE(record_args); i++)
1657  rec_argv[i] = strdup(record_args[i]);
1658 
1659  for (j = 1; j < (unsigned int)argc; j++, i++)
1660  rec_argv[i] = argv[j];
1661 
1662  BUG_ON(i != rec_argc);
1663 
1664  return cmd_record(i, rec_argv, NULL);
1665 }
1666 
1667 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1668 {
1669  const char default_sort_order[] = "avg, max, switch, runtime";
1670  struct perf_sched sched = {
1671  .tool = {
1672  .sample = perf_sched__process_tracepoint_sample,
1673  .comm = perf_event__process_comm,
1674  .lost = perf_event__process_lost,
1675  .fork = perf_event__process_task,
1676  .ordered_samples = true,
1677  },
1678  .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
1679  .sort_list = LIST_HEAD_INIT(sched.sort_list),
1680  .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
1681  .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1682  .curr_pid = { [0 ... MAX_CPUS - 1] = -1 },
1683  .sort_order = default_sort_order,
1684  .replay_repeat = 10,
1685  .profile_cpu = -1,
1686  .next_shortname1 = 'A',
1687  .next_shortname2 = '0',
1688  };
1689  const struct option latency_options[] = {
1690  OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1691  "sort by key(s): runtime, switch, avg, max"),
1692  OPT_INCR('v', "verbose", &verbose,
1693  "be more verbose (show symbol address, etc)"),
1694  OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1695  "CPU to profile on"),
1696  OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1697  "dump raw trace in ASCII"),
1698  OPT_END()
1699  };
1700  const struct option replay_options[] = {
1701  OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1702  "repeat the workload replay N times (-1: infinite)"),
1703  OPT_INCR('v', "verbose", &verbose,
1704  "be more verbose (show symbol address, etc)"),
1705  OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1706  "dump raw trace in ASCII"),
1707  OPT_END()
1708  };
1709  const struct option sched_options[] = {
1710  OPT_STRING('i', "input", &sched.input_name, "file",
1711  "input file name"),
1712  OPT_INCR('v', "verbose", &verbose,
1713  "be more verbose (show symbol address, etc)"),
1714  OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1715  "dump raw trace in ASCII"),
1716  OPT_END()
1717  };
1718  const char * const latency_usage[] = {
1719  "perf sched latency [<options>]",
1720  NULL
1721  };
1722  const char * const replay_usage[] = {
1723  "perf sched replay [<options>]",
1724  NULL
1725  };
1726  const char * const sched_usage[] = {
1727  "perf sched [<options>] {record|latency|map|replay|script}",
1728  NULL
1729  };
1730  struct trace_sched_handler lat_ops = {
1731  .wakeup_event = latency_wakeup_event,
1732  .switch_event = latency_switch_event,
1733  .runtime_event = latency_runtime_event,
1734  .fork_event = latency_fork_event,
1735  .migrate_task_event = latency_migrate_task_event,
1736  };
1737  struct trace_sched_handler map_ops = {
1738  .switch_event = map_switch_event,
1739  };
1740  struct trace_sched_handler replay_ops = {
1741  .wakeup_event = replay_wakeup_event,
1742  .switch_event = replay_switch_event,
1743  .fork_event = replay_fork_event,
1744  };
1745 
1746  argc = parse_options(argc, argv, sched_options, sched_usage,
1748  if (!argc)
1749  usage_with_options(sched_usage, sched_options);
1750 
1751  /*
1752  * Aliased to 'perf script' for now:
1753  */
1754  if (!strcmp(argv[0], "script"))
1755  return cmd_script(argc, argv, prefix);
1756 
1757  symbol__init();
1758  if (!strncmp(argv[0], "rec", 3)) {
1759  return __cmd_record(argc, argv);
1760  } else if (!strncmp(argv[0], "lat", 3)) {
1761  sched.tp_handler = &lat_ops;
1762  if (argc > 1) {
1763  argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1764  if (argc)
1765  usage_with_options(latency_usage, latency_options);
1766  }
1767  setup_sorting(&sched, latency_options, latency_usage);
1768  return perf_sched__lat(&sched);
1769  } else if (!strcmp(argv[0], "map")) {
1770  sched.tp_handler = &map_ops;
1771  setup_sorting(&sched, latency_options, latency_usage);
1772  return perf_sched__map(&sched);
1773  } else if (!strncmp(argv[0], "rep", 3)) {
1774  sched.tp_handler = &replay_ops;
1775  if (argc) {
1776  argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1777  if (argc)
1778  usage_with_options(replay_usage, replay_options);
1779  }
1780  return perf_sched__replay(&sched);
1781  } else {
1782  usage_with_options(sched_usage, sched_options);
1783  }
1784 
1785  return 0;
1786 }