Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ctvmem.c
Go to the documentation of this file.
1 
18 #include "ctvmem.h"
19 #include <linux/slab.h>
20 #include <linux/mm.h>
21 #include <linux/io.h>
22 #include <sound/pcm.h>
23 
24 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
25 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
26 
27 /* *
28  * Find or create vm block based on requested @size.
29  * @size must be page aligned.
30  * */
31 static struct ct_vm_block *
32 get_vm_block(struct ct_vm *vm, unsigned int size)
33 {
34  struct ct_vm_block *block = NULL, *entry;
35  struct list_head *pos;
36 
37  size = CT_PAGE_ALIGN(size);
38  if (size > vm->size) {
39  printk(KERN_ERR "ctxfi: Fail! No sufficient device virtual "
40  "memory space available!\n");
41  return NULL;
42  }
43 
44  mutex_lock(&vm->lock);
45  list_for_each(pos, &vm->unused) {
46  entry = list_entry(pos, struct ct_vm_block, list);
47  if (entry->size >= size)
48  break; /* found a block that is big enough */
49  }
50  if (pos == &vm->unused)
51  goto out;
52 
53  if (entry->size == size) {
54  /* Move the vm node from unused list to used list directly */
55  list_move(&entry->list, &vm->used);
56  vm->size -= size;
57  block = entry;
58  goto out;
59  }
60 
61  block = kzalloc(sizeof(*block), GFP_KERNEL);
62  if (!block)
63  goto out;
64 
65  block->addr = entry->addr;
66  block->size = size;
67  list_add(&block->list, &vm->used);
68  entry->addr += size;
69  entry->size -= size;
70  vm->size -= size;
71 
72  out:
73  mutex_unlock(&vm->lock);
74  return block;
75 }
76 
77 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
78 {
79  struct ct_vm_block *entry, *pre_ent;
80  struct list_head *pos, *pre;
81 
82  block->size = CT_PAGE_ALIGN(block->size);
83 
84  mutex_lock(&vm->lock);
85  list_del(&block->list);
86  vm->size += block->size;
87 
88  list_for_each(pos, &vm->unused) {
89  entry = list_entry(pos, struct ct_vm_block, list);
90  if (entry->addr >= (block->addr + block->size))
91  break; /* found a position */
92  }
93  if (pos == &vm->unused) {
94  list_add_tail(&block->list, &vm->unused);
95  entry = block;
96  } else {
97  if ((block->addr + block->size) == entry->addr) {
98  entry->addr = block->addr;
99  entry->size += block->size;
100  kfree(block);
101  } else {
102  __list_add(&block->list, pos->prev, pos);
103  entry = block;
104  }
105  }
106 
107  pos = &entry->list;
108  pre = pos->prev;
109  while (pre != &vm->unused) {
110  entry = list_entry(pos, struct ct_vm_block, list);
111  pre_ent = list_entry(pre, struct ct_vm_block, list);
112  if ((pre_ent->addr + pre_ent->size) > entry->addr)
113  break;
114 
115  pre_ent->size += entry->size;
116  list_del(pos);
117  kfree(entry);
118  pos = pre;
119  pre = pos->prev;
120  }
121  mutex_unlock(&vm->lock);
122 }
123 
124 /* Map host addr (kmalloced/vmalloced) to device logical addr. */
125 static struct ct_vm_block *
126 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
127 {
128  struct ct_vm_block *block;
129  unsigned int pte_start;
130  unsigned i, pages;
131  unsigned long *ptp;
132 
133  block = get_vm_block(vm, size);
134  if (block == NULL) {
135  printk(KERN_ERR "ctxfi: No virtual memory block that is big "
136  "enough to allocate!\n");
137  return NULL;
138  }
139 
140  ptp = (unsigned long *)vm->ptp[0].area;
141  pte_start = (block->addr >> CT_PAGE_SHIFT);
142  pages = block->size >> CT_PAGE_SHIFT;
143  for (i = 0; i < pages; i++) {
144  unsigned long addr;
145  addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
146  ptp[pte_start + i] = addr;
147  }
148 
149  block->size = size;
150  return block;
151 }
152 
153 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
154 {
155  /* do unmapping */
156  put_vm_block(vm, block);
157 }
158 
159 /* *
160  * return the host physical addr of the @index-th device
161  * page table page on success, or ~0UL on failure.
162  * The first returned ~0UL indicates the termination.
163  * */
164 static dma_addr_t
165 ct_get_ptp_phys(struct ct_vm *vm, int index)
166 {
168 
169  addr = (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
170 
171  return addr;
172 }
173 
174 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
175 {
176  struct ct_vm *vm;
177  struct ct_vm_block *block;
178  int i, err = 0;
179 
180  *rvm = NULL;
181 
182  vm = kzalloc(sizeof(*vm), GFP_KERNEL);
183  if (!vm)
184  return -ENOMEM;
185 
186  mutex_init(&vm->lock);
187 
188  /* Allocate page table pages */
189  for (i = 0; i < CT_PTP_NUM; i++) {
191  snd_dma_pci_data(pci),
192  PAGE_SIZE, &vm->ptp[i]);
193  if (err < 0)
194  break;
195  }
196  if (err < 0) {
197  /* no page table pages are allocated */
198  ct_vm_destroy(vm);
199  return -ENOMEM;
200  }
201  vm->size = CT_ADDRS_PER_PAGE * i;
202  vm->map = ct_vm_map;
203  vm->unmap = ct_vm_unmap;
204  vm->get_ptp_phys = ct_get_ptp_phys;
205  INIT_LIST_HEAD(&vm->unused);
206  INIT_LIST_HEAD(&vm->used);
207  block = kzalloc(sizeof(*block), GFP_KERNEL);
208  if (NULL != block) {
209  block->addr = 0;
210  block->size = vm->size;
211  list_add(&block->list, &vm->unused);
212  }
213 
214  *rvm = vm;
215  return 0;
216 }
217 
218 /* The caller must ensure no mapping pages are being used
219  * by hardware before calling this function */
220 void ct_vm_destroy(struct ct_vm *vm)
221 {
222  int i;
223  struct list_head *pos;
224  struct ct_vm_block *entry;
225 
226  /* free used and unused list nodes */
227  while (!list_empty(&vm->used)) {
228  pos = vm->used.next;
229  list_del(pos);
230  entry = list_entry(pos, struct ct_vm_block, list);
231  kfree(entry);
232  }
233  while (!list_empty(&vm->unused)) {
234  pos = vm->unused.next;
235  list_del(pos);
236  entry = list_entry(pos, struct ct_vm_block, list);
237  kfree(entry);
238  }
239 
240  /* free allocated page table pages */
241  for (i = 0; i < CT_PTP_NUM; i++)
242  snd_dma_free_pages(&vm->ptp[i]);
243 
244  vm->size = 0;
245 
246  kfree(vm);
247 }