Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cvmx.h
Go to the documentation of this file.
1 /***********************license start***************
2  * Author: Cavium Networks
3  *
4  * Contact: [email protected]
5  * This file is part of the OCTEON SDK
6  *
7  * Copyright (c) 2003-2008 Cavium Networks
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT. See the GNU General Public License for more
17  * details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this file; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22  * or visit http://www.gnu.org/licenses/.
23  *
24  * This file may also be available under a different license from Cavium.
25  * Contact Cavium Networks for more information
26  ***********************license end**************************************/
27 
28 #ifndef __CVMX_H__
29 #define __CVMX_H__
30 
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 
39 };
40 
41 /* These macros for use when using 32 bit pointers. */
42 #define CVMX_MIPS32_SPACE_KSEG0 1l
43 #define CVMX_ADD_SEG32(segment, add) \
44  (((int32_t)segment << 31) | (int32_t)(add))
45 
46 #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS
47 
48 /* These macros simplify the process of creating common IO addresses */
49 #define CVMX_ADD_SEG(segment, add) \
50  ((((uint64_t)segment) << 62) | (add))
51 #ifndef CVMX_ADD_IO_SEG
52 #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add))
53 #endif
54 
55 #include <asm/octeon/cvmx-asm.h>
56 #include <asm/octeon/cvmx-packet.h>
58 
69 
72 #include <asm/octeon/cvmx-l2c.h>
73 
74 #ifndef CVMX_ENABLE_DEBUG_PRINTS
75 #define CVMX_ENABLE_DEBUG_PRINTS 1
76 #endif
77 
78 #if CVMX_ENABLE_DEBUG_PRINTS
79 #define cvmx_dprintf printk
80 #else
81 #define cvmx_dprintf(...) {}
82 #endif
83 
84 #define CVMX_MAX_CORES (16)
85 #define CVMX_CACHE_LINE_SIZE (128) /* In bytes */
86 #define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) /* In bytes */
87 #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE)))
88 #define CAST64(v) ((long long)(long)(v))
89 #define CASTPTR(type, v) ((type *)(long)(v))
90 
91 /*
92  * Returns processor ID, different Linux and simple exec versions
93  * provided in the cvmx-app-init*.c files.
94  */
95 static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure));
96 static inline uint32_t cvmx_get_proc_id(void)
97 {
98  uint32_t id;
99  asm("mfc0 %0, $15,0" : "=r"(id));
100  return id;
101 }
102 
103 /* turn the variable name into a string */
104 #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
105 #define CVMX_TMP_STR2(x) #x
106  static inline uint64_t cvmx_build_mask(uint64_t bits)
113 {
114  return ~((~0x0ull) << bits);
115 }
116 
124 static inline uint64_t cvmx_build_io_address(uint64_t major_did,
125  uint64_t sub_did)
126 {
127  return (0x1ull << 48) | (major_did << 43) | (sub_did << 40);
128 }
129 
147 static inline uint64_t cvmx_build_bits(uint64_t high_bit,
148  uint64_t low_bit, uint64_t value)
149 {
150  return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit;
151 }
152 
161 static inline uint64_t cvmx_ptr_to_phys(void *ptr)
162 {
163  if (sizeof(void *) == 8) {
164  /*
165  * We're running in 64 bit mode. Normally this means
166  * that we can use 40 bits of address space (the
167  * hardware limit). Unfortunately there is one case
168  * were we need to limit this to 30 bits, sign
169  * extended 32 bit. Although these are 64 bits wide,
170  * only 30 bits can be used.
171  */
172  if ((CAST64(ptr) >> 62) == 3)
173  return CAST64(ptr) & cvmx_build_mask(30);
174  else
175  return CAST64(ptr) & cvmx_build_mask(40);
176  } else {
177  return (long)(ptr) & 0x1fffffff;
178  }
179 }
180 
189 static inline void *cvmx_phys_to_ptr(uint64_t physical_address)
190 {
191  if (sizeof(void *) == 8) {
192  /* Just set the top bit, avoiding any TLB uglyness */
193  return CASTPTR(void,
195  physical_address));
196  } else {
197  return CASTPTR(void,
199  physical_address));
200  }
201 }
202 
203 /* The following #if controls the definition of the macro
204  CVMX_BUILD_WRITE64. This macro is used to build a store operation to
205  a full 64bit address. With a 64bit ABI, this can be done with a simple
206  pointer access. 32bit ABIs require more complicated assembly */
207 
208 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
209  a simple volatile pointer */
210 #define CVMX_BUILD_WRITE64(TYPE, ST) \
211 static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \
212 { \
213  *CASTPTR(volatile TYPE##_t, addr) = val; \
214 }
215 
216 
217 /* The following #if controls the definition of the macro
218  CVMX_BUILD_READ64. This macro is used to build a load operation from
219  a full 64bit address. With a 64bit ABI, this can be done with a simple
220  pointer access. 32bit ABIs require more complicated assembly */
221 
222 /* We have a full 64bit ABI. Writing to a 64bit address can be done with
223  a simple volatile pointer */
224 #define CVMX_BUILD_READ64(TYPE, LT) \
225 static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \
226 { \
227  return *CASTPTR(volatile TYPE##_t, addr); \
228 }
229 
230 
231 /* The following defines 8 functions for writing to a 64bit address. Each
232  takes two arguments, the address and the value to write.
233  cvmx_write64_int64 cvmx_write64_uint64
234  cvmx_write64_int32 cvmx_write64_uint32
235  cvmx_write64_int16 cvmx_write64_uint16
236  cvmx_write64_int8 cvmx_write64_uint8 */
240 CVMX_BUILD_WRITE64(int8, "sb");
245 #define cvmx_write64 cvmx_write64_uint64
246 
247 /* The following defines 8 functions for reading from a 64bit address. Each
248  takes the address as the only argument
249  cvmx_read64_int64 cvmx_read64_uint64
250  cvmx_read64_int32 cvmx_read64_uint32
251  cvmx_read64_int16 cvmx_read64_uint16
252  cvmx_read64_int8 cvmx_read64_uint8 */
253 CVMX_BUILD_READ64(int64, "ld");
254 CVMX_BUILD_READ64(int32, "lw");
255 CVMX_BUILD_READ64(int16, "lh");
256 CVMX_BUILD_READ64(int8, "lb");
259 CVMX_BUILD_READ64(uint16, "lhu");
260 CVMX_BUILD_READ64(uint8, "lbu");
261 #define cvmx_read64 cvmx_read64_uint64
262 
263 
264 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val)
265 {
266  cvmx_write64(csr_addr, val);
267 
268  /*
269  * Perform an immediate read after every write to an RSL
270  * register to force the write to complete. It doesn't matter
271  * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT
272  * because it is fast and harmless.
273  */
274  if (((csr_addr >> 40) & 0x7ffff) == (0x118))
276 }
277 
278 static inline void cvmx_write_io(uint64_t io_addr, uint64_t val)
279 {
280  cvmx_write64(io_addr, val);
281 
282 }
283 
284 static inline uint64_t cvmx_read_csr(uint64_t csr_addr)
285 {
286  uint64_t val = cvmx_read64(csr_addr);
287  return val;
288 }
289 
290 
291 static inline void cvmx_send_single(uint64_t data)
292 {
293  const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull;
294  cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data);
295 }
296 
297 static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr)
298 {
299  union {
300  uint64_t u64;
301  struct {
302  uint64_t scraddr:8;
303  uint64_t len:8;
304  uint64_t addr:48;
305  } s;
306  } addr;
307  addr.u64 = csr_addr;
308  addr.s.scraddr = scraddr >> 3;
309  addr.s.len = 1;
310  cvmx_send_single(addr.u64);
311 }
312 
313 /* Return true if Octeon is CN38XX pass 1 */
314 static inline int cvmx_octeon_is_pass1(void)
315 {
316 #if OCTEON_IS_COMMON_BINARY()
317  return 0; /* Pass 1 isn't supported for common binaries */
318 #else
319 /* Now that we know we're built for a specific model, only check CN38XX */
320 #if OCTEON_IS_MODEL(OCTEON_CN38XX)
321  return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1;
322 #else
323  return 0; /* Built for non CN38XX chip, we're not CN38XX pass1 */
324 #endif
325 #endif
326 }
327 
328 static inline unsigned int cvmx_get_core_num(void)
329 {
330  unsigned int core_num;
331  CVMX_RDHWRNV(core_num, 0);
332  return core_num;
333 }
334 
343 static inline uint32_t cvmx_pop(uint32_t val)
344 {
345  uint32_t pop;
346  CVMX_POP(pop, val);
347  return pop;
348 }
349 
358 static inline int cvmx_dpop(uint64_t val)
359 {
360  int pop;
361  CVMX_DPOP(pop, val);
362  return pop;
363 }
364 
371 static inline uint64_t cvmx_get_cycle(void)
372 {
373  uint64_t cycle;
374  CVMX_RDHWR(cycle, 31);
375  return cycle;
376 }
377 
382 static inline void cvmx_wait(uint64_t cycles)
383 {
384  uint64_t done = cvmx_get_cycle() + cycles;
385 
386  while (cvmx_get_cycle() < done)
387  ; /* Spin */
388 }
389 
397 static inline uint64_t cvmx_get_cycle_global(void)
398 {
399  if (cvmx_octeon_is_pass1())
400  return 0;
401  else
403 }
404 
414 #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\
415  ( \
416 { \
417  int result; \
418  do { \
419  uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
420  cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \
421  type c; \
422  while (1) { \
423  c.u64 = cvmx_read_csr(address); \
424  if ((c.s.field) op(value)) { \
425  result = 0; \
426  break; \
427  } else if (cvmx_get_cycle() > done) { \
428  result = -1; \
429  break; \
430  } else \
431  cvmx_wait(100); \
432  } \
433  } while (0); \
434  result; \
435 })
436 
437 /***************************************************************************/
438 
439 static inline void cvmx_reset_octeon(void)
440 {
441  union cvmx_ciu_soft_rst ciu_soft_rst;
442  ciu_soft_rst.u64 = 0;
443  ciu_soft_rst.s.soft_rst = 1;
444  cvmx_write_csr(CVMX_CIU_SOFT_RST, ciu_soft_rst.u64);
445 }
446 
447 /* Return the number of cores available in the chip */
448 static inline uint32_t cvmx_octeon_num_cores(void)
449 {
450  uint32_t ciu_fuse = (uint32_t) cvmx_read_csr(CVMX_CIU_FUSE) & 0xffff;
451  return cvmx_pop(ciu_fuse);
452 }
453 
460 static uint8_t cvmx_fuse_read_byte(int byte_addr)
461 {
462  union cvmx_mio_fus_rcmd read_cmd;
463 
464  read_cmd.u64 = 0;
465  read_cmd.s.addr = byte_addr;
466  read_cmd.s.pend = 1;
467  cvmx_write_csr(CVMX_MIO_FUS_RCMD, read_cmd.u64);
468  while ((read_cmd.u64 = cvmx_read_csr(CVMX_MIO_FUS_RCMD))
469  && read_cmd.s.pend)
470  ;
471  return read_cmd.s.dat;
472 }
473 
481 static inline int cvmx_fuse_read(int fuse)
482 {
483  return (cvmx_fuse_read_byte(fuse >> 3) >> (fuse & 0x7)) & 1;
484 }
485 
486 static inline int cvmx_octeon_model_CN36XX(void)
487 {
489  && !cvmx_octeon_is_pass1()
490  && cvmx_fuse_read(264);
491 }
492 
493 static inline int cvmx_octeon_zip_present(void)
494 {
495  return octeon_has_feature(OCTEON_FEATURE_ZIP);
496 }
497 
498 static inline int cvmx_octeon_dfa_present(void)
499 {
503  return 0;
504  else if (OCTEON_IS_MODEL(OCTEON_CN3020))
505  return 0;
506  else if (cvmx_octeon_is_pass1())
507  return 1;
508  else
509  return !cvmx_fuse_read(120);
510 }
511 
512 static inline int cvmx_octeon_crypto_present(void)
513 {
514  return octeon_has_feature(OCTEON_FEATURE_CRYPTO);
515 }
516 
517 #endif /* __CVMX_H__ */