Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dbl_float.h
Go to the documentation of this file.
1 /*
2  * Linux/PA-RISC Project (http://www.parisc-linux.org/)
3  *
4  * Floating-point emulation code
5  * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21 #ifdef __NO_PA_HDRS
22  PA header file -- do not include this header file for non-PA builds.
23 #endif
24 
25 /* 32-bit word grabbing functions */
26 #define Dbl_firstword(value) Dallp1(value)
27 #define Dbl_secondword(value) Dallp2(value)
28 #define Dbl_thirdword(value) dummy_location
29 #define Dbl_fourthword(value) dummy_location
30 
31 #define Dbl_sign(object) Dsign(object)
32 #define Dbl_exponent(object) Dexponent(object)
33 #define Dbl_signexponent(object) Dsignexponent(object)
34 #define Dbl_mantissap1(object) Dmantissap1(object)
35 #define Dbl_mantissap2(object) Dmantissap2(object)
36 #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
37 #define Dbl_allp1(object) Dallp1(object)
38 #define Dbl_allp2(object) Dallp2(object)
39 
40 /* dbl_and_signs ANDs the sign bits of each argument and puts the result
41  * into the first argument. dbl_or_signs ors those same sign bits */
42 #define Dbl_and_signs( src1dst, src2) \
43  Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
44 #define Dbl_or_signs( src1dst, src2) \
45  Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
46 
47 /* The hidden bit is always the low bit of the exponent */
48 #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
49 #define Dbl_clear_signexponent_set_hidden(srcdst) \
50  Deposit_dsignexponent(srcdst,1)
51 #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
52 #define Dbl_clear_signexponent(srcdst) \
53  Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
54 
55 /* Exponent field for doubles has already been cleared and may be
56  * included in the shift. Here we need to generate two double width
57  * variable shifts. The insignificant bits can be ignored.
58  * MTSAR f(varamount)
59  * VSHD srcdst.high,srcdst.low => srcdst.low
60  * VSHD 0,srcdst.high => srcdst.high
61  * This is very difficult to model with C expressions since the shift amount
62  * could exceed 32. */
63 /* varamount must be less than 64 */
64 #define Dbl_rightshift(srcdstA, srcdstB, varamount) \
65  {if((varamount) >= 32) { \
66  Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \
67  Dallp1(srcdstA)=0; \
68  } \
69  else if(varamount > 0) { \
70  Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \
71  (varamount), Dallp2(srcdstB)); \
72  Dallp1(srcdstA) >>= varamount; \
73  } }
74 /* varamount must be less than 64 */
75 #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \
76  {if((varamount) >= 32) { \
77  Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
78  Dallp1(srcdstA) &= ((unsigned int)1<<31); /* clear expmant field */ \
79  } \
80  else if(varamount > 0) { \
81  Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
82  (varamount), Dallp2(srcdstB)); \
83  Deposit_dexponentmantissap1(srcdstA, \
84  (Dexponentmantissap1(srcdstA)>>varamount)); \
85  } }
86 /* varamount must be less than 64 */
87 #define Dbl_leftshift(srcdstA, srcdstB, varamount) \
88  {if((varamount) >= 32) { \
89  Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \
90  Dallp2(srcdstB)=0; \
91  } \
92  else { \
93  if ((varamount) > 0) { \
94  Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \
95  (Dallp2(srcdstB) >> (32-(varamount))); \
96  Dallp2(srcdstB) <<= varamount; \
97  } \
98  } }
99 #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \
100  Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \
101  Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
102 
103 #define Dbl_rightshiftby1_withextent(leftb,right,dst) \
104  Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
105  Extlow(right)
106 
107 #define Dbl_arithrightshiftby1(srcdstA,srcdstB) \
108  Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
109  Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
110 
111 /* Sign extend the sign bit with an integer destination */
112 #define Dbl_signextendedsign(value) Dsignedsign(value)
113 
114 #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
115 /* Singles and doubles may include the sign and exponent fields. The
116  * hidden bit and the hidden overflow must be included. */
117 #define Dbl_increment(dbl_valueA,dbl_valueB) \
118  if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1
119 #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
120  if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \
121  Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
122 #define Dbl_decrement(dbl_valueA,dbl_valueB) \
123  if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \
124  Dallp2(dbl_valueB) -= 1
125 
126 #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
127 #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
128 #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
129 #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
130 #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
131 #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
132 #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
133  (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
134 #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
135  (Dhiddenhigh7mantissa(dbl_value)!=0)
136 #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
137 #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
138  (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
139 #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
140 #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
141 #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
142  (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
143 #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
144 #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
145  Dallp2(dbl_valueB)==0)
146 #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
147 #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
148 #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
149 #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
150 #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
151  (Dhiddenhigh3mantissa(dbl_value)==0)
152 #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
153  (Dhiddenhigh7mantissa(dbl_value)==0)
154 #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
155 #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
156 #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
157  (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
158 #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
159  (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
160 #define Dbl_isinfinity_exponent(dbl_value) \
161  (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
162 #define Dbl_isnotinfinity_exponent(dbl_value) \
163  (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
164 #define Dbl_isinfinity(dbl_valueA,dbl_valueB) \
165  (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
166  Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
167 #define Dbl_isnan(dbl_valueA,dbl_valueB) \
168  (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
169  (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
170 #define Dbl_isnotnan(dbl_valueA,dbl_valueB) \
171  (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \
172  (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
173 
174 #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
175  (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
176  (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
177  Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
178 #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
179  (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
180  (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
181  Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
182 #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
183  (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
184  (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
185  Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
186 #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
187  (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
188  (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
189  Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
190 #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
191  ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \
192  (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
193 
194 #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
195  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
196  Dallp2(dbl_valueB) <<= 8
197 #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
198  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
199  Dallp2(dbl_valueB) <<= 7
200 #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
201  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
202  Dallp2(dbl_valueB) <<= 4
203 #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
204  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
205  Dallp2(dbl_valueB) <<= 3
206 #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
207  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
208  Dallp2(dbl_valueB) <<= 2
209 #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
210  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
211  Dallp2(dbl_valueB) <<= 1
212 
213 #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
214  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
215  Dallp1(dbl_valueA) >>= 8
216 #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
217  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
218  Dallp1(dbl_valueA) >>= 4
219 #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
220  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
221  Dallp1(dbl_valueA) >>= 2
222 #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
223  Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
224  Dallp1(dbl_valueA) >>= 1
225 
226 /* This magnitude comparison uses the signless first words and
227  * the regular part2 words. The comparison is graphically:
228  *
229  * 1st greater? -------------
230  * |
231  * 1st less?-----------------+---------
232  * | |
233  * 2nd greater or equal----->| |
234  * False True
235  */
236 #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
237  ((signlessleft <= signlessright) && \
238  ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
239 
240 #define Dbl_copytoint_exponentmantissap1(src,dest) \
241  dest = Dexponentmantissap1(src)
242 
243 /* A quiet NaN has the high mantissa bit clear and at least on other (in this
244  * case the adjacent bit) bit set. */
245 #define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
246 #define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
247 
248 #define Dbl_set_mantissa(desta,destb,valuea,valueb) \
249  Deposit_dmantissap1(desta,valuea); \
250  Dmantissap2(destb) = Dmantissap2(valueb)
251 #define Dbl_set_mantissap1(desta,valuea) \
252  Deposit_dmantissap1(desta,valuea)
253 #define Dbl_set_mantissap2(destb,valueb) \
254  Dmantissap2(destb) = Dmantissap2(valueb)
255 
256 #define Dbl_set_exponentmantissa(desta,destb,valuea,valueb) \
257  Deposit_dexponentmantissap1(desta,valuea); \
258  Dmantissap2(destb) = Dmantissap2(valueb)
259 #define Dbl_set_exponentmantissap1(dest,value) \
260  Deposit_dexponentmantissap1(dest,value)
261 
262 #define Dbl_copyfromptr(src,desta,destb) \
263  Dallp1(desta) = src->wd0; \
264  Dallp2(destb) = src->wd1
265 #define Dbl_copytoptr(srca,srcb,dest) \
266  dest->wd0 = Dallp1(srca); \
267  dest->wd1 = Dallp2(srcb)
268 
269 /* An infinity is represented with the max exponent and a zero mantissa */
270 #define Dbl_setinfinity_exponent(dbl_value) \
271  Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
272 #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \
273  Deposit_dexponentmantissap1(dbl_valueA, \
274  (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \
275  Dmantissap2(dbl_valueB) = 0
276 #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \
277  Dallp1(dbl_valueA) \
278  = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
279  Dmantissap2(dbl_valueB) = 0
280 #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \
281  Dallp1(dbl_valueA) = ((unsigned int)1<<31) | \
282  (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
283  Dmantissap2(dbl_valueB) = 0
284 #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \
285  Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
286  (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
287  Dmantissap2(dbl_valueB) = 0
288 
289 #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
290 #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
291 #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
292 #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
293 #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
294 #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
295 #define Dbl_setzero_exponent(dbl_value) \
296  Dallp1(dbl_value) &= 0x800fffff
297 #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \
298  Dallp1(dbl_valueA) &= 0xfff00000; \
299  Dallp2(dbl_valueB) = 0
300 #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
301 #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
302 #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \
303  Dallp1(dbl_valueA) &= 0x80000000; \
304  Dallp2(dbl_valueB) = 0
305 #define Dbl_setzero_exponentmantissap1(dbl_valueA) \
306  Dallp1(dbl_valueA) &= 0x80000000
307 #define Dbl_setzero(dbl_valueA,dbl_valueB) \
308  Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
309 #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
310 #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
311 #define Dbl_setnegativezero(dbl_value) \
312  Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
313 #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
314 
315 /* Use the following macro for both overflow & underflow conditions */
316 #define ovfl -
317 #define unfl +
318 #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
319  Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
320 
321 #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \
322  Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
323  | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \
324  Dallp2(dbl_valueB) = 0xFFFFFFFF
325 #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \
326  Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
327  | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) \
328  | ((unsigned int)1<<31); \
329  Dallp2(dbl_valueB) = 0xFFFFFFFF
330 #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \
331  Deposit_dexponentmantissap1(dbl_valueA, \
332  (((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
333  | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \
334  Dallp2(dbl_valueB) = 0xFFFFFFFF
335 
336 #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \
337  Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) \
338  << (32-(1+DBL_EXP_LENGTH)) ; \
339  Dallp2(dbl_valueB) = 0
340 #define Dbl_setlargest(dbl_valueA,dbl_valueB,sign) \
341  Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
342  ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) | \
343  ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 ); \
344  Dallp2(dbl_valueB) = 0xFFFFFFFF
345 
346 
347 /* The high bit is always zero so arithmetic or logical shifts will work. */
348 #define Dbl_right_align(srcdstA,srcdstB,shift,extent) \
349  if( shift >= 32 ) \
350  { \
351  /* Big shift requires examining the portion shift off \
352  the end to properly set inexact. */ \
353  if(shift < 64) \
354  { \
355  if(shift > 32) \
356  { \
357  Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \
358  shift-32, Extall(extent)); \
359  if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
360  } \
361  else Extall(extent) = Dallp2(srcdstB); \
362  Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \
363  } \
364  else \
365  { \
366  Extall(extent) = Dallp1(srcdstA); \
367  if(Dallp2(srcdstB)) Ext_setone_low(extent); \
368  Dallp2(srcdstB) = 0; \
369  } \
370  Dallp1(srcdstA) = 0; \
371  } \
372  else \
373  { \
374  /* Small alignment is simpler. Extension is easily set. */ \
375  if (shift > 0) \
376  { \
377  Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
378  Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
379  Dallp2(srcdstB)); \
380  Dallp1(srcdstA) >>= shift; \
381  } \
382  else Extall(extent) = 0; \
383  }
384 
385 /*
386  * Here we need to shift the result right to correct for an overshift
387  * (due to the exponent becoming negative) during normalization.
388  */
389 #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \
390  Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
391  Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) | \
392  (Dallp2(srcdstB) >> (shift)); \
393  Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
395 #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
396 #define Dbl_hidden(dbl_value) Dhidden(dbl_value)
397 #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
398 
399 /* The left argument is never smaller than the right argument */
400 #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \
401  if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \
402  Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \
403  Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
404 
405 /* Subtract right augmented with extension from left augmented with zeros and
406  * store into result and extension. */
407 #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \
408  Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \
409  if( (Extall(extent) = 0-Extall(extent)) ) \
410  { \
411  if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \
412  }
414 #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \
415  /* If the sum of the low words is less than either source, then \
416  * an overflow into the next word occurred. */ \
417  Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \
418  if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
419  Dallp1(resulta)++
420 
421 #define Dbl_xortointp1(left,right,result) \
422  result = Dallp1(left) XOR Dallp1(right)
423 
424 #define Dbl_xorfromintp1(left,right,result) \
425  Dallp1(result) = left XOR Dallp1(right)
426 
427 #define Dbl_swap_lower(left,right) \
428  Dallp2(left) = Dallp2(left) XOR Dallp2(right); \
429  Dallp2(right) = Dallp2(left) XOR Dallp2(right); \
430  Dallp2(left) = Dallp2(left) XOR Dallp2(right)
432 /* Need to Initialize */
433 #define Dbl_makequietnan(desta,destb) \
434  Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
435  | (1<<(32-(1+DBL_EXP_LENGTH+2))); \
436  Dallp2(destb) = 0
437 #define Dbl_makesignalingnan(desta,destb) \
438  Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
439  | (1<<(32-(1+DBL_EXP_LENGTH+1))); \
440  Dallp2(destb) = 0
441 
442 #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \
443  while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \
444  Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \
445  exponent -= 8; \
446  } \
447  if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \
448  Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \
449  exponent -= 4; \
450  } \
451  while(Dbl_iszero_hidden(dbl_opndA)) { \
452  Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \
453  exponent -= 1; \
454  }
455 
456 #define Twoword_add(src1dstA,src1dstB,src2A,src2B) \
457  /* \
458  * want this macro to generate: \
459  * ADD src1dstB,src2B,src1dstB; \
460  * ADDC src1dstA,src2A,src1dstA; \
461  */ \
462  if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
463  Dallp1(src1dstA) += (src2A); \
464  Dallp2(src1dstB) += (src2B)
465 
466 #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \
467  /* \
468  * want this macro to generate: \
469  * SUB src1dstB,src2B,src1dstB; \
470  * SUBB src1dstA,src2A,src1dstA; \
471  */ \
472  if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \
473  Dallp1(src1dstA) -= (src2A); \
474  Dallp2(src1dstB) -= (src2B)
475 
476 #define Dbl_setoverflow(resultA,resultB) \
477  /* set result to infinity or largest number */ \
478  switch (Rounding_mode()) { \
479  case ROUNDPLUS: \
480  if (Dbl_isone_sign(resultA)) { \
481  Dbl_setlargestnegative(resultA,resultB); \
482  } \
483  else { \
484  Dbl_setinfinitypositive(resultA,resultB); \
485  } \
486  break; \
487  case ROUNDMINUS: \
488  if (Dbl_iszero_sign(resultA)) { \
489  Dbl_setlargestpositive(resultA,resultB); \
490  } \
491  else { \
492  Dbl_setinfinitynegative(resultA,resultB); \
493  } \
494  break; \
495  case ROUNDNEAREST: \
496  Dbl_setinfinity_exponentmantissa(resultA,resultB); \
497  break; \
498  case ROUNDZERO: \
499  Dbl_setlargest_exponentmantissa(resultA,resultB); \
500  }
501 
502 #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \
503  Dbl_clear_signexponent_set_hidden(opndp1); \
504  if (exponent >= (1-DBL_P)) { \
505  if (exponent >= -31) { \
506  guard = (Dallp2(opndp2) >> -exponent) & 1; \
507  if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
508  if (exponent > -31) { \
509  Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \
510  Dallp1(opndp1) >>= 1-exponent; \
511  } \
512  else { \
513  Dallp2(opndp2) = Dallp1(opndp1); \
514  Dbl_setzerop1(opndp1); \
515  } \
516  } \
517  else { \
518  guard = (Dallp1(opndp1) >> -32-exponent) & 1; \
519  if (exponent == -32) sticky |= Dallp2(opndp2); \
520  else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
521  Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent; \
522  Dbl_setzerop1(opndp1); \
523  } \
524  inexact = guard | sticky; \
525  } \
526  else { \
527  guard = 0; \
528  sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \
529  Dbl_setzero(opndp1,opndp2); \
530  inexact = sticky; \
531  }
532 
533 /*
534  * The fused multiply add instructions requires a double extended format,
535  * with 106 bits of mantissa.
536  */
537 #define DBLEXT_THRESHOLD 106
539 #define Dblext_setzero(valA,valB,valC,valD) \
540  Dextallp1(valA) = 0; Dextallp2(valB) = 0; \
541  Dextallp3(valC) = 0; Dextallp4(valD) = 0
543 
544 #define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
545 #define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
546 #define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
547 #define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
548 #define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
549 #define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
550  Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
551 
552 #define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
553  Dextallp1(desta) = Dextallp4(srca); \
554  Dextallp2(destb) = Dextallp4(srcb); \
555  Dextallp3(destc) = Dextallp4(srcc); \
556  Dextallp4(destd) = Dextallp4(srcd)
557 
558 #define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4) \
559  Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
560  Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
561  Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
562  Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
563  Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
564  Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
565  Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
566  Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
567  Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4)
568 
569 #define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
570 
571 /* The high bit is always zero so arithmetic or logical shifts will work. */
572 #define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
573  {int shiftamt, sticky; \
574  shiftamt = shift % 32; \
575  sticky = 0; \
576  switch (shift/32) { \
577  case 0: if (shiftamt > 0) { \
578  sticky = Dextallp4(srcdstD) << 32 - (shiftamt); \
579  Variable_shift_double(Dextallp3(srcdstC), \
580  Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD)); \
581  Variable_shift_double(Dextallp2(srcdstB), \
582  Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC)); \
583  Variable_shift_double(Dextallp1(srcdstA), \
584  Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB)); \
585  Dextallp1(srcdstA) >>= shiftamt; \
586  } \
587  break; \
588  case 1: if (shiftamt > 0) { \
589  sticky = (Dextallp3(srcdstC) << 31 - shiftamt) | \
590  Dextallp4(srcdstD); \
591  Variable_shift_double(Dextallp2(srcdstB), \
592  Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD)); \
593  Variable_shift_double(Dextallp1(srcdstA), \
594  Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC)); \
595  } \
596  else { \
597  sticky = Dextallp4(srcdstD); \
598  Dextallp4(srcdstD) = Dextallp3(srcdstC); \
599  Dextallp3(srcdstC) = Dextallp2(srcdstB); \
600  } \
601  Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt; \
602  Dextallp1(srcdstA) = 0; \
603  break; \
604  case 2: if (shiftamt > 0) { \
605  sticky = (Dextallp2(srcdstB) << 31 - shiftamt) | \
606  Dextallp3(srcdstC) | Dextallp4(srcdstD); \
607  Variable_shift_double(Dextallp1(srcdstA), \
608  Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD)); \
609  } \
610  else { \
611  sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD); \
612  Dextallp4(srcdstD) = Dextallp2(srcdstB); \
613  } \
614  Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt; \
615  Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
616  break; \
617  case 3: if (shiftamt > 0) { \
618  sticky = (Dextallp1(srcdstA) << 31 - shiftamt) | \
619  Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
620  Dextallp4(srcdstD); \
621  } \
622  else { \
623  sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
624  Dextallp4(srcdstD); \
625  } \
626  Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt; \
627  Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
628  Dextallp3(srcdstC) = 0; \
629  break; \
630  } \
631  if (sticky) Dblext_setone_lowmantissap4(srcdstD); \
632  }
633 
634 /* The left argument is never smaller than the right argument */
635 #define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
636  if( Dextallp4(rightd) > Dextallp4(leftd) ) \
637  if( (Dextallp3(leftc)--) == 0) \
638  if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
639  Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd); \
640  if( Dextallp3(rightc) > Dextallp3(leftc) ) \
641  if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
642  Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc); \
643  if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
644  Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb); \
645  Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
646 
647 #define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
648  /* If the sum of the low words is less than either source, then \
649  * an overflow into the next word occurred. */ \
650  if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
651  Dextallp4(rightd)) \
652  if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
653  Dextallp3(rightc)) \
654  if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
655  <= Dextallp2(rightb)) \
656  Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
657  else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
658  else \
659  if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
660  Dextallp2(rightb)) \
661  Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
662  else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
663  else \
664  if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
665  Dextallp3(rightc)) \
666  if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
667  <= Dextallp2(rightb)) \
668  Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
669  else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
670  else \
671  if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
672  Dextallp2(rightb)) \
673  Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
674  else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
675 
676 
677 #define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD) \
678  Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
679  Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
680  Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
681  Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
682 
683 #define Dblext_leftshiftby8(valA,valB,valC,valD) \
684  Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
685  Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
686  Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
687  Dextallp4(valD) <<= 8
688 #define Dblext_leftshiftby4(valA,valB,valC,valD) \
689  Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
690  Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
691  Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
692  Dextallp4(valD) <<= 4
693 #define Dblext_leftshiftby3(valA,valB,valC,valD) \
694  Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
695  Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
696  Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
697  Dextallp4(valD) <<= 3
698 #define Dblext_leftshiftby2(valA,valB,valC,valD) \
699  Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
700  Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
701  Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
702  Dextallp4(valD) <<= 2
703 #define Dblext_leftshiftby1(valA,valB,valC,valD) \
704  Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
705  Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
706  Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
707  Dextallp4(valD) <<= 1
708 
709 #define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
710  Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
711  Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
712  Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
713  Dextallp1(valueA) >>= 4
714 #define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
715  Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
716  Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
717  Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
718  Dextallp1(valueA) >>= 1
719 
720 #define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
721 
722 #define Dblext_xorfromintp1(left,right,result) \
723  Dbl_xorfromintp1(left,right,result)
725 #define Dblext_copytoint_exponentmantissap1(src,dest) \
726  Dbl_copytoint_exponentmantissap1(src,dest)
728 #define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
729  Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
730 
731 #define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
732  Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
733  Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
734 
735 #define Dblext_set_sign(dbl_value,sign) Dbl_set_sign(dbl_value,sign)
736 #define Dblext_clear_signexponent_set_hidden(srcdst) \
737  Dbl_clear_signexponent_set_hidden(srcdst)
738 #define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
739 #define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
740 #define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
741 
742 /*
743  * The Fourword_add() macro assumes that integers are 4 bytes in size.
744  * It will break if this is not the case.
745  */
746 
747 #define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
748  /* \
749  * want this macro to generate: \
750  * ADD src1dstD,src2D,src1dstD; \
751  * ADDC src1dstC,src2C,src1dstC; \
752  * ADDC src1dstB,src2B,src1dstB; \
753  * ADDC src1dstA,src2A,src1dstA; \
754  */ \
755  if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
756  if ((unsigned int)(src1dstC += (src2C) + 1) <= \
757  (unsigned int)(src2C)) { \
758  if ((unsigned int)(src1dstB += (src2B) + 1) <= \
759  (unsigned int)(src2B)) src1dstA++; \
760  } \
761  else if ((unsigned int)(src1dstB += (src2B)) < \
762  (unsigned int)(src2B)) src1dstA++; \
763  } \
764  else { \
765  if ((unsigned int)(src1dstC += (src2C)) < \
766  (unsigned int)(src2C)) { \
767  if ((unsigned int)(src1dstB += (src2B) + 1) <= \
768  (unsigned int)(src2B)) src1dstA++; \
769  } \
770  else if ((unsigned int)(src1dstB += (src2B)) < \
771  (unsigned int)(src2B)) src1dstA++; \
772  } \
773  src1dstA += (src2A)
774 
775 #define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
776  {int shiftamt, sticky; \
777  is_tiny = TRUE; \
778  if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) { \
779  switch (Rounding_mode()) { \
780  case ROUNDPLUS: \
781  if (Dbl_iszero_sign(opndp1)) { \
782  Dbl_increment(opndp1,opndp2); \
783  if (Dbl_isone_hiddenoverflow(opndp1)) \
784  is_tiny = FALSE; \
785  Dbl_decrement(opndp1,opndp2); \
786  } \
787  break; \
788  case ROUNDMINUS: \
789  if (Dbl_isone_sign(opndp1)) { \
790  Dbl_increment(opndp1,opndp2); \
791  if (Dbl_isone_hiddenoverflow(opndp1)) \
792  is_tiny = FALSE; \
793  Dbl_decrement(opndp1,opndp2); \
794  } \
795  break; \
796  case ROUNDNEAREST: \
797  if (Dblext_isone_highp3(opndp3) && \
798  (Dblext_isone_lowp2(opndp2) || \
799  Dblext_isnotzero_low31p3(opndp3))) { \
800  Dbl_increment(opndp1,opndp2); \
801  if (Dbl_isone_hiddenoverflow(opndp1)) \
802  is_tiny = FALSE; \
803  Dbl_decrement(opndp1,opndp2); \
804  } \
805  break; \
806  } \
807  } \
808  Dblext_clear_signexponent_set_hidden(opndp1); \
809  if (exponent >= (1-QUAD_P)) { \
810  shiftamt = (1-exponent) % 32; \
811  switch((1-exponent)/32) { \
812  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt); \
813  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4); \
814  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3); \
815  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2); \
816  Dextallp1(opndp1) >>= shiftamt; \
817  break; \
818  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | \
819  Dextallp4(opndp4); \
820  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4); \
821  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3); \
822  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt; \
823  Dextallp1(opndp1) = 0; \
824  break; \
825  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) | \
826  Dextallp3(opndp3) | Dextallp4(opndp4); \
827  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4); \
828  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt; \
829  Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
830  break; \
831  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) | \
832  Dextallp2(opndp2) | Dextallp3(opndp3) | \
833  Dextallp4(opndp4); \
834  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt; \
835  Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
836  Dextallp3(opndp3) = 0; \
837  break; \
838  } \
839  } \
840  else { \
841  sticky = Dextallp1(opndp1) | Dextallp2(opndp2) | \
842  Dextallp3(opndp3) | Dextallp4(opndp4); \
843  Dblext_setzero(opndp1,opndp2,opndp3,opndp4); \
844  } \
845  if (sticky) Dblext_setone_lowmantissap4(opndp4); \
846  exponent = 0; \
847  }