Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
dfs_pri_detector.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012 Neratec Solutions AG
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 
20 #include "ath9k.h"
21 #include "dfs_pattern_detector.h"
22 #include "dfs_pri_detector.h"
23 #include "dfs_debug.h"
24 
36 struct pri_sequence {
37  struct list_head head;
45 };
46 
51 struct pulse_elem {
52  struct list_head head;
54 };
55 
60 static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
61 {
62  u32 remainder;
63  u32 factor;
64  u32 delta;
65 
66  if (fraction == 0)
67  return 0;
68 
69  delta = (val < fraction) ? (fraction - val) : (val - fraction);
70 
71  if (delta <= tolerance)
72  /* val and fraction are within tolerance */
73  return 1;
74 
75  factor = val / fraction;
76  remainder = val % fraction;
77  if (remainder > tolerance) {
78  /* no exact match */
79  if ((fraction - remainder) <= tolerance)
80  /* remainder is within tolerance */
81  factor++;
82  else
83  factor = 0;
84  }
85  return factor;
86 }
87 
97 static u32 singleton_pool_references;
98 static LIST_HEAD(pulse_pool);
99 static LIST_HEAD(pseq_pool);
100 static DEFINE_SPINLOCK(pool_lock);
101 
102 static void pool_register_ref(void)
103 {
104  spin_lock_bh(&pool_lock);
105  singleton_pool_references++;
106  DFS_POOL_STAT_INC(pool_reference);
107  spin_unlock_bh(&pool_lock);
108 }
109 
110 static void pool_deregister_ref(void)
111 {
112  spin_lock_bh(&pool_lock);
113  singleton_pool_references--;
114  DFS_POOL_STAT_DEC(pool_reference);
115  if (singleton_pool_references == 0) {
116  /* free singleton pools with no references left */
117  struct pri_sequence *ps, *ps0;
118  struct pulse_elem *p, *p0;
119 
120  list_for_each_entry_safe(p, p0, &pulse_pool, head) {
121  list_del(&p->head);
122  DFS_POOL_STAT_DEC(pulse_allocated);
123  kfree(p);
124  }
125  list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
126  list_del(&ps->head);
127  DFS_POOL_STAT_DEC(pseq_allocated);
128  kfree(ps);
129  }
130  }
131  spin_unlock_bh(&pool_lock);
132 }
133 
134 static void pool_put_pulse_elem(struct pulse_elem *pe)
135 {
136  spin_lock_bh(&pool_lock);
137  list_add(&pe->head, &pulse_pool);
138  DFS_POOL_STAT_DEC(pulse_used);
139  spin_unlock_bh(&pool_lock);
140 }
141 
142 static void pool_put_pseq_elem(struct pri_sequence *pse)
143 {
144  spin_lock_bh(&pool_lock);
145  list_add(&pse->head, &pseq_pool);
146  DFS_POOL_STAT_DEC(pseq_used);
147  spin_unlock_bh(&pool_lock);
148 }
149 
150 static struct pri_sequence *pool_get_pseq_elem(void)
151 {
152  struct pri_sequence *pse = NULL;
153  spin_lock_bh(&pool_lock);
154  if (!list_empty(&pseq_pool)) {
155  pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
156  list_del(&pse->head);
157  DFS_POOL_STAT_INC(pseq_used);
158  }
159  spin_unlock_bh(&pool_lock);
160  return pse;
161 }
162 
163 static struct pulse_elem *pool_get_pulse_elem(void)
164 {
165  struct pulse_elem *pe = NULL;
166  spin_lock_bh(&pool_lock);
167  if (!list_empty(&pulse_pool)) {
168  pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
169  list_del(&pe->head);
170  DFS_POOL_STAT_INC(pulse_used);
171  }
172  spin_unlock_bh(&pool_lock);
173  return pe;
174 }
175 
176 static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
177 {
178  struct list_head *l = &pde->pulses;
179  if (list_empty(l))
180  return NULL;
181  return list_entry(l->prev, struct pulse_elem, head);
182 }
183 
184 static bool pulse_queue_dequeue(struct pri_detector *pde)
185 {
186  struct pulse_elem *p = pulse_queue_get_tail(pde);
187  if (p != NULL) {
188  list_del_init(&p->head);
189  pde->count--;
190  /* give it back to pool */
191  pool_put_pulse_elem(p);
192  }
193  return (pde->count > 0);
194 }
195 
196 /* remove pulses older than window */
197 static void pulse_queue_check_window(struct pri_detector *pde)
198 {
199  u64 min_valid_ts;
200  struct pulse_elem *p;
201 
202  /* there is no delta time with less than 2 pulses */
203  if (pde->count < 2)
204  return;
205 
206  if (pde->last_ts <= pde->window_size)
207  return;
208 
209  min_valid_ts = pde->last_ts - pde->window_size;
210  while ((p = pulse_queue_get_tail(pde)) != NULL) {
211  if (p->ts >= min_valid_ts)
212  return;
213  pulse_queue_dequeue(pde);
214  }
215 }
216 
217 static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
218 {
219  struct pulse_elem *p = pool_get_pulse_elem();
220  if (p == NULL) {
221  p = kmalloc(sizeof(*p), GFP_KERNEL);
222  if (p == NULL) {
223  DFS_POOL_STAT_INC(pulse_alloc_error);
224  return false;
225  }
226  DFS_POOL_STAT_INC(pulse_allocated);
227  DFS_POOL_STAT_INC(pulse_used);
228  }
229  INIT_LIST_HEAD(&p->head);
230  p->ts = ts;
231  list_add(&p->head, &pde->pulses);
232  pde->count++;
233  pde->last_ts = ts;
234  pulse_queue_check_window(pde);
235  if (pde->count >= pde->max_count)
236  pulse_queue_dequeue(pde);
237  return true;
238 }
239 
240 static bool pseq_handler_create_sequences(struct pri_detector *pde,
241  u64 ts, u32 min_count)
242 {
243  struct pulse_elem *p;
244  list_for_each_entry(p, &pde->pulses, head) {
245  struct pri_sequence ps, *new_ps;
246  struct pulse_elem *p2;
247  u32 tmp_false_count;
248  u64 min_valid_ts;
249  u32 delta_ts = ts - p->ts;
250 
251  if (delta_ts < pde->rs->pri_min)
252  /* ignore too small pri */
253  continue;
254 
255  if (delta_ts > pde->rs->pri_max)
256  /* stop on too large pri (sorted list) */
257  break;
258 
259  /* build a new sequence with new potential pri */
260  ps.count = 2;
261  ps.count_falses = 0;
262  ps.first_ts = p->ts;
263  ps.last_ts = ts;
264  ps.pri = ts - p->ts;
265  ps.dur = ps.pri * (pde->rs->ppb - 1)
266  + 2 * pde->rs->max_pri_tolerance;
267 
268  p2 = p;
269  tmp_false_count = 0;
270  min_valid_ts = ts - ps.dur;
271  /* check which past pulses are candidates for new sequence */
273  u32 factor;
274  if (p2->ts < min_valid_ts)
275  /* stop on crossing window border */
276  break;
277  /* check if pulse match (multi)PRI */
278  factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
279  pde->rs->max_pri_tolerance);
280  if (factor > 0) {
281  ps.count++;
282  ps.first_ts = p2->ts;
283  /*
284  * on match, add the intermediate falses
285  * and reset counter
286  */
287  ps.count_falses += tmp_false_count;
288  tmp_false_count = 0;
289  } else {
290  /* this is a potential false one */
291  tmp_false_count++;
292  }
293  }
294  if (ps.count < min_count)
295  /* did not reach minimum count, drop sequence */
296  continue;
297 
298  /* this is a valid one, add it */
299  ps.deadline_ts = ps.first_ts + ps.dur;
300  new_ps = pool_get_pseq_elem();
301  if (new_ps == NULL) {
302  new_ps = kmalloc(sizeof(*new_ps), GFP_KERNEL);
303  if (new_ps == NULL) {
304  DFS_POOL_STAT_INC(pseq_alloc_error);
305  return false;
306  }
307  DFS_POOL_STAT_INC(pseq_allocated);
308  DFS_POOL_STAT_INC(pseq_used);
309  }
310  memcpy(new_ps, &ps, sizeof(ps));
311  INIT_LIST_HEAD(&new_ps->head);
312  list_add(&new_ps->head, &pde->sequences);
313  }
314  return true;
315 }
316 
317 /* check new ts and add to all matching existing sequences */
318 static u32
319 pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
320 {
321  u32 max_count = 0;
322  struct pri_sequence *ps, *ps2;
323  list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
324  u32 delta_ts;
325  u32 factor;
326 
327  /* first ensure that sequence is within window */
328  if (ts > ps->deadline_ts) {
329  list_del_init(&ps->head);
330  pool_put_pseq_elem(ps);
331  continue;
332  }
333 
334  delta_ts = ts - ps->last_ts;
335  factor = pde_get_multiple(delta_ts, ps->pri,
336  pde->rs->max_pri_tolerance);
337  if (factor > 0) {
338  ps->last_ts = ts;
339  ps->count++;
340 
341  if (max_count < ps->count)
342  max_count = ps->count;
343  } else {
344  ps->count_falses++;
345  }
346  }
347  return max_count;
348 }
349 
350 static struct pri_sequence *
351 pseq_handler_check_detection(struct pri_detector *pde)
352 {
353  struct pri_sequence *ps;
354 
355  if (list_empty(&pde->sequences))
356  return NULL;
357 
358  list_for_each_entry(ps, &pde->sequences, head) {
359  /*
360  * we assume to have enough matching confidence if we
361  * 1) have enough pulses
362  * 2) have more matching than false pulses
363  */
364  if ((ps->count >= pde->rs->ppb_thresh) &&
365  (ps->count * pde->rs->num_pri >= ps->count_falses))
366  return ps;
367  }
368  return NULL;
369 }
370 
371 
372 /* free pulse queue and sequences list and give objects back to pools */
373 static void pri_detector_reset(struct pri_detector *pde, u64 ts)
374 {
375  struct pri_sequence *ps, *ps0;
376  struct pulse_elem *p, *p0;
377  list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
378  list_del_init(&ps->head);
379  pool_put_pseq_elem(ps);
380  }
381  list_for_each_entry_safe(p, p0, &pde->pulses, head) {
382  list_del_init(&p->head);
383  pool_put_pulse_elem(p);
384  }
385  pde->count = 0;
386  pde->last_ts = ts;
387 }
388 
389 static void pri_detector_exit(struct pri_detector *de)
390 {
391  pri_detector_reset(de, 0);
392  pool_deregister_ref();
393  kfree(de);
394 }
395 
396 static bool pri_detector_add_pulse(struct pri_detector *de,
397  struct pulse_event *event)
398 {
399  u32 max_updated_seq;
400  struct pri_sequence *ps;
401  u64 ts = event->ts;
402  const struct radar_detector_specs *rs = de->rs;
403 
404  /* ignore pulses not within width range */
405  if ((rs->width_min > event->width) || (rs->width_max < event->width))
406  return false;
407 
408  if ((ts - de->last_ts) < rs->max_pri_tolerance)
409  /* if delta to last pulse is too short, don't use this pulse */
410  return false;
411  de->last_ts = ts;
412 
413  max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);
414 
415  if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
416  pr_err("failed to create pulse sequences\n");
417  pri_detector_reset(de, ts);
418  return false;
419  }
420 
421  ps = pseq_handler_check_detection(de);
422 
423  if (ps != NULL) {
424  pr_info("DFS: radar found: pri=%d, count=%d, count_false=%d\n",
425  ps->pri, ps->count, ps->count_falses);
426  pri_detector_reset(de, ts);
427  return true;
428  }
429  pulse_queue_enqueue(de, ts);
430  return false;
431 }
432 
433 struct pri_detector *
435 {
436  struct pri_detector *de;
437  de = kzalloc(sizeof(*de), GFP_KERNEL);
438  if (de == NULL)
439  return NULL;
440  de->exit = pri_detector_exit;
441  de->add_pulse = pri_detector_add_pulse;
442  de->reset = pri_detector_reset;
443 
444  INIT_LIST_HEAD(&de->sequences);
445  INIT_LIST_HEAD(&de->pulses);
446  de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
447  de->max_count = rs->ppb * 2;
448  de->rs = rs;
449 
450  pool_register_ref();
451  return de;
452 }