Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
doc2000.c
Go to the documentation of this file.
1 
2 /*
3  * Linux driver for Disk-On-Chip 2000 and Millennium
4  * (c) 1999 Machine Vision Holdings, Inc.
5  * (c) 1999, 2000 David Woodhouse <[email protected]>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <asm/errno.h>
11 #include <asm/io.h>
12 #include <asm/uaccess.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/mutex.h>
20 
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/nand.h>
23 #include <linux/mtd/doc2000.h>
24 
25 #define DOC_SUPPORT_2000
26 #define DOC_SUPPORT_2000TSOP
27 #define DOC_SUPPORT_MILLENNIUM
28 
29 #ifdef DOC_SUPPORT_2000
30 #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
31 #else
32 #define DoC_is_2000(doc) (0)
33 #endif
34 
35 #if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
36 #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
37 #else
38 #define DoC_is_Millennium(doc) (0)
39 #endif
40 
41 /* #define ECC_DEBUG */
42 
43 /* I have no idea why some DoC chips can not use memcpy_from|to_io().
44  * This may be due to the different revisions of the ASIC controller built-in or
45  * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
46  * this:
47  #undef USE_MEMCPY
48 */
49 
50 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
51  size_t *retlen, u_char *buf);
52 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
53  size_t *retlen, const u_char *buf);
54 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
55  struct mtd_oob_ops *ops);
56 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
57  struct mtd_oob_ops *ops);
58 static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
59  size_t *retlen, const u_char *buf);
60 static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
61 
62 static struct mtd_info *doc2klist = NULL;
63 
64 /* Perform the required delay cycles by reading from the appropriate register */
65 static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
66 {
67  volatile char dummy;
68  int i;
69 
70  for (i = 0; i < cycles; i++) {
71  if (DoC_is_Millennium(doc))
72  dummy = ReadDOC(doc->virtadr, NOP);
73  else
74  dummy = ReadDOC(doc->virtadr, DOCStatus);
75  }
76 
77 }
78 
79 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
80 static int _DoC_WaitReady(struct DiskOnChip *doc)
81 {
82  void __iomem *docptr = doc->virtadr;
83  unsigned long timeo = jiffies + (HZ * 10);
84 
85  pr_debug("_DoC_WaitReady called for out-of-line wait\n");
86 
87  /* Out-of-line routine to wait for chip response */
88  while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
89  /* issue 2 read from NOP register after reading from CDSNControl register
90  see Software Requirement 11.4 item 2. */
91  DoC_Delay(doc, 2);
92 
93  if (time_after(jiffies, timeo)) {
94  pr_debug("_DoC_WaitReady timed out.\n");
95  return -EIO;
96  }
97  udelay(1);
98  cond_resched();
99  }
100 
101  return 0;
102 }
103 
104 static inline int DoC_WaitReady(struct DiskOnChip *doc)
105 {
106  void __iomem *docptr = doc->virtadr;
107 
108  /* This is inline, to optimise the common case, where it's ready instantly */
109  int ret = 0;
110 
111  /* 4 read form NOP register should be issued in prior to the read from CDSNControl
112  see Software Requirement 11.4 item 2. */
113  DoC_Delay(doc, 4);
114 
115  if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
116  /* Call the out-of-line routine to wait */
117  ret = _DoC_WaitReady(doc);
118 
119  /* issue 2 read from NOP register after reading from CDSNControl register
120  see Software Requirement 11.4 item 2. */
121  DoC_Delay(doc, 2);
122 
123  return ret;
124 }
125 
126 /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
127  bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
128  required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
129 
130 static int DoC_Command(struct DiskOnChip *doc, unsigned char command,
131  unsigned char xtraflags)
132 {
133  void __iomem *docptr = doc->virtadr;
134 
135  if (DoC_is_2000(doc))
136  xtraflags |= CDSN_CTRL_FLASH_IO;
137 
138  /* Assert the CLE (Command Latch Enable) line to the flash chip */
139  WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
140  DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
141 
142  if (DoC_is_Millennium(doc))
143  WriteDOC(command, docptr, CDSNSlowIO);
144 
145  /* Send the command */
146  WriteDOC_(command, docptr, doc->ioreg);
147  if (DoC_is_Millennium(doc))
148  WriteDOC(command, docptr, WritePipeTerm);
149 
150  /* Lower the CLE line */
151  WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
152  DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
153 
154  /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
155  return DoC_WaitReady(doc);
156 }
157 
158 /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
159  bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
160  required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
161 
162 static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
163  unsigned char xtraflags1, unsigned char xtraflags2)
164 {
165  int i;
166  void __iomem *docptr = doc->virtadr;
167 
168  if (DoC_is_2000(doc))
169  xtraflags1 |= CDSN_CTRL_FLASH_IO;
170 
171  /* Assert the ALE (Address Latch Enable) line to the flash chip */
172  WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
173 
174  DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
175 
176  /* Send the address */
177  /* Devices with 256-byte page are addressed as:
178  Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
179  * there is no device on the market with page256
180  and more than 24 bits.
181  Devices with 512-byte page are addressed as:
182  Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
183  * 25-31 is sent only if the chip support it.
184  * bit 8 changes the read command to be sent
185  (NAND_CMD_READ0 or NAND_CMD_READ1).
186  */
187 
188  if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
189  if (DoC_is_Millennium(doc))
190  WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
191  WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
192  }
193 
194  if (doc->page256) {
195  ofs = ofs >> 8;
196  } else {
197  ofs = ofs >> 9;
198  }
199 
200  if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
201  for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
202  if (DoC_is_Millennium(doc))
203  WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
204  WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
205  }
206  }
207 
208  if (DoC_is_Millennium(doc))
209  WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
210 
211  DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
212 
213  /* FIXME: The SlowIO's for millennium could be replaced by
214  a single WritePipeTerm here. mf. */
215 
216  /* Lower the ALE line */
217  WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
218  CDSNControl);
219 
220  DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
221 
222  /* Wait for the chip to respond - Software requirement 11.4.1 */
223  return DoC_WaitReady(doc);
224 }
225 
226 /* Read a buffer from DoC, taking care of Millennium odditys */
227 static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
228 {
229  volatile int dummy;
230  int modulus = 0xffff;
231  void __iomem *docptr = doc->virtadr;
232  int i;
233 
234  if (len <= 0)
235  return;
236 
237  if (DoC_is_Millennium(doc)) {
238  /* Read the data via the internal pipeline through CDSN IO register,
239  see Pipelined Read Operations 11.3 */
240  dummy = ReadDOC(docptr, ReadPipeInit);
241 
242  /* Millennium should use the LastDataRead register - Pipeline Reads */
243  len--;
244 
245  /* This is needed for correctly ECC calculation */
246  modulus = 0xff;
247  }
248 
249  for (i = 0; i < len; i++)
250  buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
251 
252  if (DoC_is_Millennium(doc)) {
253  buf[i] = ReadDOC(docptr, LastDataRead);
254  }
255 }
256 
257 /* Write a buffer to DoC, taking care of Millennium odditys */
258 static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
259 {
260  void __iomem *docptr = doc->virtadr;
261  int i;
262 
263  if (len <= 0)
264  return;
265 
266  for (i = 0; i < len; i++)
267  WriteDOC_(buf[i], docptr, doc->ioreg + i);
268 
269  if (DoC_is_Millennium(doc)) {
270  WriteDOC(0x00, docptr, WritePipeTerm);
271  }
272 }
273 
274 
275 /* DoC_SelectChip: Select a given flash chip within the current floor */
276 
277 static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
278 {
279  void __iomem *docptr = doc->virtadr;
280 
281  /* Software requirement 11.4.4 before writing DeviceSelect */
282  /* Deassert the CE line to eliminate glitches on the FCE# outputs */
283  WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
284  DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
285 
286  /* Select the individual flash chip requested */
287  WriteDOC(chip, docptr, CDSNDeviceSelect);
288  DoC_Delay(doc, 4);
289 
290  /* Reassert the CE line */
292  CDSNControl);
293  DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
294 
295  /* Wait for it to be ready */
296  return DoC_WaitReady(doc);
297 }
298 
299 /* DoC_SelectFloor: Select a given floor (bank of flash chips) */
300 
301 static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
302 {
303  void __iomem *docptr = doc->virtadr;
304 
305  /* Select the floor (bank) of chips required */
306  WriteDOC(floor, docptr, FloorSelect);
307 
308  /* Wait for the chip to be ready */
309  return DoC_WaitReady(doc);
310 }
311 
312 /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
313 
314 static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
315 {
316  int mfr, id, i, j;
317  volatile char dummy;
318 
319  /* Page in the required floor/chip */
320  DoC_SelectFloor(doc, floor);
321  DoC_SelectChip(doc, chip);
322 
323  /* Reset the chip */
324  if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
325  pr_debug("DoC_Command (reset) for %d,%d returned true\n",
326  floor, chip);
327  return 0;
328  }
329 
330 
331  /* Read the NAND chip ID: 1. Send ReadID command */
332  if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
333  pr_debug("DoC_Command (ReadID) for %d,%d returned true\n",
334  floor, chip);
335  return 0;
336  }
337 
338  /* Read the NAND chip ID: 2. Send address byte zero */
339  DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
340 
341  /* Read the manufacturer and device id codes from the device */
342 
343  if (DoC_is_Millennium(doc)) {
344  DoC_Delay(doc, 2);
345  dummy = ReadDOC(doc->virtadr, ReadPipeInit);
346  mfr = ReadDOC(doc->virtadr, LastDataRead);
347 
348  DoC_Delay(doc, 2);
349  dummy = ReadDOC(doc->virtadr, ReadPipeInit);
350  id = ReadDOC(doc->virtadr, LastDataRead);
351  } else {
352  /* CDSN Slow IO register see Software Req 11.4 item 5. */
353  dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
354  DoC_Delay(doc, 2);
355  mfr = ReadDOC_(doc->virtadr, doc->ioreg);
356 
357  /* CDSN Slow IO register see Software Req 11.4 item 5. */
358  dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
359  DoC_Delay(doc, 2);
360  id = ReadDOC_(doc->virtadr, doc->ioreg);
361  }
362 
363  /* No response - return failure */
364  if (mfr == 0xff || mfr == 0)
365  return 0;
366 
367  /* Check it's the same as the first chip we identified.
368  * M-Systems say that any given DiskOnChip device should only
369  * contain _one_ type of flash part, although that's not a
370  * hardware restriction. */
371  if (doc->mfr) {
372  if (doc->mfr == mfr && doc->id == id)
373  return 1; /* This is the same as the first */
374  else
376  "Flash chip at floor %d, chip %d is different:\n",
377  floor, chip);
378  }
379 
380  /* Print and store the manufacturer and ID codes. */
381  for (i = 0; nand_flash_ids[i].name != NULL; i++) {
382  if (id == nand_flash_ids[i].id) {
383  /* Try to identify manufacturer */
384  for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
385  if (nand_manuf_ids[j].id == mfr)
386  break;
387  }
389  "Flash chip found: Manufacturer ID: %2.2X, "
390  "Chip ID: %2.2X (%s:%s)\n", mfr, id,
391  nand_manuf_ids[j].name, nand_flash_ids[i].name);
392  if (!doc->mfr) {
393  doc->mfr = mfr;
394  doc->id = id;
395  doc->chipshift =
396  ffs((nand_flash_ids[i].chipsize << 20)) - 1;
397  doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
398  doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
399  doc->erasesize =
400  nand_flash_ids[i].erasesize;
401  return 1;
402  }
403  return 0;
404  }
405  }
406 
407 
408  /* We haven't fully identified the chip. Print as much as we know. */
409  printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
410  id, mfr);
411 
412  printk(KERN_WARNING "Please report to [email protected]\n");
413  return 0;
414 }
415 
416 /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
417 
418 static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
419 {
420  int floor, chip;
421  int numchips[MAX_FLOORS];
422  int ret = 1;
423 
424  this->numchips = 0;
425  this->mfr = 0;
426  this->id = 0;
427 
428  /* For each floor, find the number of valid chips it contains */
429  for (floor = 0; floor < MAX_FLOORS; floor++) {
430  ret = 1;
431  numchips[floor] = 0;
432  for (chip = 0; chip < maxchips && ret != 0; chip++) {
433 
434  ret = DoC_IdentChip(this, floor, chip);
435  if (ret) {
436  numchips[floor]++;
437  this->numchips++;
438  }
439  }
440  }
441 
442  /* If there are none at all that we recognise, bail */
443  if (!this->numchips) {
444  printk(KERN_NOTICE "No flash chips recognised.\n");
445  return;
446  }
447 
448  /* Allocate an array to hold the information for each chip */
449  this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
450  if (!this->chips) {
451  printk(KERN_NOTICE "No memory for allocating chip info structures\n");
452  return;
453  }
454 
455  ret = 0;
456 
457  /* Fill out the chip array with {floor, chipno} for each
458  * detected chip in the device. */
459  for (floor = 0; floor < MAX_FLOORS; floor++) {
460  for (chip = 0; chip < numchips[floor]; chip++) {
461  this->chips[ret].floor = floor;
462  this->chips[ret].chip = chip;
463  this->chips[ret].curadr = 0;
464  this->chips[ret].curmode = 0x50;
465  ret++;
466  }
467  }
468 
469  /* Calculate and print the total size of the device */
470  this->totlen = this->numchips * (1 << this->chipshift);
471 
472  printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
473  this->numchips, this->totlen >> 20);
474 }
475 
476 static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
477 {
478  int tmp1, tmp2, retval;
479  if (doc1->physadr == doc2->physadr)
480  return 1;
481 
482  /* Use the alias resolution register which was set aside for this
483  * purpose. If it's value is the same on both chips, they might
484  * be the same chip, and we write to one and check for a change in
485  * the other. It's unclear if this register is usuable in the
486  * DoC 2000 (it's in the Millennium docs), but it seems to work. */
487  tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
488  tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
489  if (tmp1 != tmp2)
490  return 0;
491 
492  WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
493  tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
494  if (tmp2 == (tmp1 + 1) % 0xff)
495  retval = 1;
496  else
497  retval = 0;
498 
499  /* Restore register contents. May not be necessary, but do it just to
500  * be safe. */
501  WriteDOC(tmp1, doc1->virtadr, AliasResolution);
502 
503  return retval;
504 }
505 
506 /* This routine is found from the docprobe code by symbol_get(),
507  * which will bump the use count of this module. */
508 void DoC2k_init(struct mtd_info *mtd)
509 {
510  struct DiskOnChip *this = mtd->priv;
511  struct DiskOnChip *old = NULL;
512  int maxchips;
513 
514  /* We must avoid being called twice for the same device. */
515 
516  if (doc2klist)
517  old = doc2klist->priv;
518 
519  while (old) {
520  if (DoC2k_is_alias(old, this)) {
522  "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
523  this->physadr);
524  iounmap(this->virtadr);
525  kfree(mtd);
526  return;
527  }
528  if (old->nextdoc)
529  old = old->nextdoc->priv;
530  else
531  old = NULL;
532  }
533 
534 
535  switch (this->ChipID) {
537  mtd->name = "DiskOnChip 2000 TSOP";
538  this->ioreg = DoC_Mil_CDSN_IO;
539  /* Pretend it's a Millennium */
540  this->ChipID = DOC_ChipID_DocMil;
541  maxchips = MAX_CHIPS;
542  break;
543  case DOC_ChipID_Doc2k:
544  mtd->name = "DiskOnChip 2000";
545  this->ioreg = DoC_2k_CDSN_IO;
546  maxchips = MAX_CHIPS;
547  break;
548  case DOC_ChipID_DocMil:
549  mtd->name = "DiskOnChip Millennium";
550  this->ioreg = DoC_Mil_CDSN_IO;
551  maxchips = MAX_CHIPS_MIL;
552  break;
553  default:
554  printk("Unknown ChipID 0x%02x\n", this->ChipID);
555  kfree(mtd);
556  iounmap(this->virtadr);
557  return;
558  }
559 
560  printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
561  this->physadr);
562 
563  mtd->type = MTD_NANDFLASH;
564  mtd->flags = MTD_CAP_NANDFLASH;
565  mtd->writebufsize = mtd->writesize = 512;
566  mtd->oobsize = 16;
567  mtd->ecc_strength = 2;
568  mtd->owner = THIS_MODULE;
569  mtd->_erase = doc_erase;
570  mtd->_read = doc_read;
571  mtd->_write = doc_write;
572  mtd->_read_oob = doc_read_oob;
573  mtd->_write_oob = doc_write_oob;
574  this->curfloor = -1;
575  this->curchip = -1;
576  mutex_init(&this->lock);
577 
578  /* Ident all the chips present. */
579  DoC_ScanChips(this, maxchips);
580 
581  if (!this->totlen) {
582  kfree(mtd);
583  iounmap(this->virtadr);
584  } else {
585  this->nextdoc = doc2klist;
586  doc2klist = mtd;
587  mtd->size = this->totlen;
588  mtd->erasesize = this->erasesize;
589  mtd_device_register(mtd, NULL, 0);
590  return;
591  }
592 }
594 
595 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
596  size_t * retlen, u_char * buf)
597 {
598  struct DiskOnChip *this = mtd->priv;
599  void __iomem *docptr = this->virtadr;
600  struct Nand *mychip;
601  unsigned char syndrome[6], eccbuf[6];
602  volatile char dummy;
603  int i, len256 = 0, ret=0;
604  size_t left = len;
605 
606  mutex_lock(&this->lock);
607  while (left) {
608  len = left;
609 
610  /* Don't allow a single read to cross a 512-byte block boundary */
611  if (from + len > ((from | 0x1ff) + 1))
612  len = ((from | 0x1ff) + 1) - from;
613 
614  /* The ECC will not be calculated correctly if less than 512 is read */
615  if (len != 0x200)
617  "ECC needs a full sector read (adr: %lx size %lx)\n",
618  (long) from, (long) len);
619 
620  /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
621 
622 
623  /* Find the chip which is to be used and select it */
624  mychip = &this->chips[from >> (this->chipshift)];
625 
626  if (this->curfloor != mychip->floor) {
627  DoC_SelectFloor(this, mychip->floor);
628  DoC_SelectChip(this, mychip->chip);
629  } else if (this->curchip != mychip->chip) {
630  DoC_SelectChip(this, mychip->chip);
631  }
632 
633  this->curfloor = mychip->floor;
634  this->curchip = mychip->chip;
635 
636  DoC_Command(this,
637  (!this->page256
638  && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
639  CDSN_CTRL_WP);
640  DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
642 
643  /* Prime the ECC engine */
644  WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
645  WriteDOC(DOC_ECC_EN, docptr, ECCConf);
646 
647  /* treat crossing 256-byte sector for 2M x 8bits devices */
648  if (this->page256 && from + len > (from | 0xff) + 1) {
649  len256 = (from | 0xff) + 1 - from;
650  DoC_ReadBuf(this, buf, len256);
651 
652  DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
653  DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
655  }
656 
657  DoC_ReadBuf(this, &buf[len256], len - len256);
658 
659  /* Let the caller know we completed it */
660  *retlen += len;
661 
662  /* Read the ECC data through the DiskOnChip ECC logic */
663  /* Note: this will work even with 2M x 8bit devices as */
664  /* they have 8 bytes of OOB per 256 page. mf. */
665  DoC_ReadBuf(this, eccbuf, 6);
666 
667  /* Flush the pipeline */
668  if (DoC_is_Millennium(this)) {
669  dummy = ReadDOC(docptr, ECCConf);
670  dummy = ReadDOC(docptr, ECCConf);
671  i = ReadDOC(docptr, ECCConf);
672  } else {
673  dummy = ReadDOC(docptr, 2k_ECCStatus);
674  dummy = ReadDOC(docptr, 2k_ECCStatus);
675  i = ReadDOC(docptr, 2k_ECCStatus);
676  }
677 
678  /* Check the ECC Status */
679  if (i & 0x80) {
680  int nb_errors;
681  /* There was an ECC error */
682 #ifdef ECC_DEBUG
683  printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
684 #endif
685  /* Read the ECC syndrome through the DiskOnChip ECC
686  logic. These syndrome will be all ZERO when there
687  is no error */
688  for (i = 0; i < 6; i++) {
689  syndrome[i] =
690  ReadDOC(docptr, ECCSyndrome0 + i);
691  }
692  nb_errors = doc_decode_ecc(buf, syndrome);
693 
694 #ifdef ECC_DEBUG
695  printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
696 #endif
697  if (nb_errors < 0) {
698  /* We return error, but have actually done the
699  read. Not that this can be told to
700  user-space, via sys_read(), but at least
701  MTD-aware stuff can know about it by
702  checking *retlen */
703  ret = -EIO;
704  }
705  }
706 
707 #ifdef PSYCHO_DEBUG
708  printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
709  (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
710  eccbuf[3], eccbuf[4], eccbuf[5]);
711 #endif
712 
713  /* disable the ECC engine */
714  WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
715 
716  /* according to 11.4.1, we need to wait for the busy line
717  * drop if we read to the end of the page. */
718  if(0 == ((from + len) & 0x1ff))
719  {
720  DoC_WaitReady(this);
721  }
722 
723  from += len;
724  left -= len;
725  buf += len;
726  }
727 
728  mutex_unlock(&this->lock);
729 
730  return ret;
731 }
732 
733 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
734  size_t * retlen, const u_char * buf)
735 {
736  struct DiskOnChip *this = mtd->priv;
737  int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
738  void __iomem *docptr = this->virtadr;
739  unsigned char eccbuf[6];
740  volatile char dummy;
741  int len256 = 0;
742  struct Nand *mychip;
743  size_t left = len;
744  int status;
745 
746  mutex_lock(&this->lock);
747  while (left) {
748  len = left;
749 
750  /* Don't allow a single write to cross a 512-byte block boundary */
751  if (to + len > ((to | 0x1ff) + 1))
752  len = ((to | 0x1ff) + 1) - to;
753 
754  /* The ECC will not be calculated correctly if less than 512 is written */
755 /* DBB-
756  if (len != 0x200 && eccbuf)
757  printk(KERN_WARNING
758  "ECC needs a full sector write (adr: %lx size %lx)\n",
759  (long) to, (long) len);
760  -DBB */
761 
762  /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
763 
764  /* Find the chip which is to be used and select it */
765  mychip = &this->chips[to >> (this->chipshift)];
766 
767  if (this->curfloor != mychip->floor) {
768  DoC_SelectFloor(this, mychip->floor);
769  DoC_SelectChip(this, mychip->chip);
770  } else if (this->curchip != mychip->chip) {
771  DoC_SelectChip(this, mychip->chip);
772  }
773 
774  this->curfloor = mychip->floor;
775  this->curchip = mychip->chip;
776 
777  /* Set device to main plane of flash */
778  DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
779  DoC_Command(this,
780  (!this->page256
781  && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
782  CDSN_CTRL_WP);
783 
784  DoC_Command(this, NAND_CMD_SEQIN, 0);
785  DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
786 
787  /* Prime the ECC engine */
788  WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
789  WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
790 
791  /* treat crossing 256-byte sector for 2M x 8bits devices */
792  if (this->page256 && to + len > (to | 0xff) + 1) {
793  len256 = (to | 0xff) + 1 - to;
794  DoC_WriteBuf(this, buf, len256);
795 
796  DoC_Command(this, NAND_CMD_PAGEPROG, 0);
797 
798  DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
799  /* There's an implicit DoC_WaitReady() in DoC_Command */
800 
801  dummy = ReadDOC(docptr, CDSNSlowIO);
802  DoC_Delay(this, 2);
803 
804  if (ReadDOC_(docptr, this->ioreg) & 1) {
805  printk(KERN_ERR "Error programming flash\n");
806  /* Error in programming */
807  *retlen = 0;
808  mutex_unlock(&this->lock);
809  return -EIO;
810  }
811 
812  DoC_Command(this, NAND_CMD_SEQIN, 0);
813  DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
815  }
816 
817  DoC_WriteBuf(this, &buf[len256], len - len256);
818 
819  WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl);
820 
821  if (DoC_is_Millennium(this)) {
822  WriteDOC(0, docptr, NOP);
823  WriteDOC(0, docptr, NOP);
824  WriteDOC(0, docptr, NOP);
825  } else {
826  WriteDOC_(0, docptr, this->ioreg);
827  WriteDOC_(0, docptr, this->ioreg);
828  WriteDOC_(0, docptr, this->ioreg);
829  }
830 
832  CDSNControl);
833 
834  /* Read the ECC data through the DiskOnChip ECC logic */
835  for (di = 0; di < 6; di++) {
836  eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
837  }
838 
839  /* Reset the ECC engine */
840  WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
841 
842 #ifdef PSYCHO_DEBUG
843  printk
844  ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
845  (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
846  eccbuf[4], eccbuf[5]);
847 #endif
848  DoC_Command(this, NAND_CMD_PAGEPROG, 0);
849 
850  DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
851  /* There's an implicit DoC_WaitReady() in DoC_Command */
852 
853  if (DoC_is_Millennium(this)) {
854  ReadDOC(docptr, ReadPipeInit);
855  status = ReadDOC(docptr, LastDataRead);
856  } else {
857  dummy = ReadDOC(docptr, CDSNSlowIO);
858  DoC_Delay(this, 2);
859  status = ReadDOC_(docptr, this->ioreg);
860  }
861 
862  if (status & 1) {
863  printk(KERN_ERR "Error programming flash\n");
864  /* Error in programming */
865  *retlen = 0;
866  mutex_unlock(&this->lock);
867  return -EIO;
868  }
869 
870  /* Let the caller know we completed it */
871  *retlen += len;
872 
873  {
874  unsigned char x[8];
875  size_t dummy;
876  int ret;
877 
878  /* Write the ECC data to flash */
879  for (di=0; di<6; di++)
880  x[di] = eccbuf[di];
881 
882  x[6]=0x55;
883  x[7]=0x55;
884 
885  ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
886  if (ret) {
887  mutex_unlock(&this->lock);
888  return ret;
889  }
890  }
891 
892  to += len;
893  left -= len;
894  buf += len;
895  }
896 
897  mutex_unlock(&this->lock);
898  return 0;
899 }
900 
901 static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
902  struct mtd_oob_ops *ops)
903 {
904  struct DiskOnChip *this = mtd->priv;
905  int len256 = 0, ret;
906  struct Nand *mychip;
907  uint8_t *buf = ops->oobbuf;
908  size_t len = ops->len;
909 
910  BUG_ON(ops->mode != MTD_OPS_PLACE_OOB);
911 
912  ofs += ops->ooboffs;
913 
914  mutex_lock(&this->lock);
915 
916  mychip = &this->chips[ofs >> this->chipshift];
917 
918  if (this->curfloor != mychip->floor) {
919  DoC_SelectFloor(this, mychip->floor);
920  DoC_SelectChip(this, mychip->chip);
921  } else if (this->curchip != mychip->chip) {
922  DoC_SelectChip(this, mychip->chip);
923  }
924  this->curfloor = mychip->floor;
925  this->curchip = mychip->chip;
926 
927  /* update address for 2M x 8bit devices. OOB starts on the second */
928  /* page to maintain compatibility with doc_read_ecc. */
929  if (this->page256) {
930  if (!(ofs & 0x8))
931  ofs += 0x100;
932  else
933  ofs -= 0x8;
934  }
935 
936  DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
937  DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
938 
939  /* treat crossing 8-byte OOB data for 2M x 8bit devices */
940  /* Note: datasheet says it should automaticaly wrap to the */
941  /* next OOB block, but it didn't work here. mf. */
942  if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
943  len256 = (ofs | 0x7) + 1 - ofs;
944  DoC_ReadBuf(this, buf, len256);
945 
946  DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
947  DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
948  CDSN_CTRL_WP, 0);
949  }
950 
951  DoC_ReadBuf(this, &buf[len256], len - len256);
952 
953  ops->retlen = len;
954  /* Reading the full OOB data drops us off of the end of the page,
955  * causing the flash device to go into busy mode, so we need
956  * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
957 
958  ret = DoC_WaitReady(this);
959 
960  mutex_unlock(&this->lock);
961  return ret;
962 
963 }
964 
965 static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
966  size_t * retlen, const u_char * buf)
967 {
968  struct DiskOnChip *this = mtd->priv;
969  int len256 = 0;
970  void __iomem *docptr = this->virtadr;
971  struct Nand *mychip = &this->chips[ofs >> this->chipshift];
972  volatile int dummy;
973  int status;
974 
975  // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
976  // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
977 
978  /* Find the chip which is to be used and select it */
979  if (this->curfloor != mychip->floor) {
980  DoC_SelectFloor(this, mychip->floor);
981  DoC_SelectChip(this, mychip->chip);
982  } else if (this->curchip != mychip->chip) {
983  DoC_SelectChip(this, mychip->chip);
984  }
985  this->curfloor = mychip->floor;
986  this->curchip = mychip->chip;
987 
988  /* disable the ECC engine */
989  WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
990  WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
991 
992  /* Reset the chip, see Software Requirement 11.4 item 1. */
993  DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
994 
995  /* issue the Read2 command to set the pointer to the Spare Data Area. */
996  DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
997 
998  /* update address for 2M x 8bit devices. OOB starts on the second */
999  /* page to maintain compatibility with doc_read_ecc. */
1000  if (this->page256) {
1001  if (!(ofs & 0x8))
1002  ofs += 0x100;
1003  else
1004  ofs -= 0x8;
1005  }
1006 
1007  /* issue the Serial Data In command to initial the Page Program process */
1008  DoC_Command(this, NAND_CMD_SEQIN, 0);
1009  DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
1010 
1011  /* treat crossing 8-byte OOB data for 2M x 8bit devices */
1012  /* Note: datasheet says it should automaticaly wrap to the */
1013  /* next OOB block, but it didn't work here. mf. */
1014  if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1015  len256 = (ofs | 0x7) + 1 - ofs;
1016  DoC_WriteBuf(this, buf, len256);
1017 
1018  DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1019  DoC_Command(this, NAND_CMD_STATUS, 0);
1020  /* DoC_WaitReady() is implicit in DoC_Command */
1021 
1022  if (DoC_is_Millennium(this)) {
1023  ReadDOC(docptr, ReadPipeInit);
1024  status = ReadDOC(docptr, LastDataRead);
1025  } else {
1026  dummy = ReadDOC(docptr, CDSNSlowIO);
1027  DoC_Delay(this, 2);
1028  status = ReadDOC_(docptr, this->ioreg);
1029  }
1030 
1031  if (status & 1) {
1032  printk(KERN_ERR "Error programming oob data\n");
1033  /* There was an error */
1034  *retlen = 0;
1035  return -EIO;
1036  }
1037  DoC_Command(this, NAND_CMD_SEQIN, 0);
1038  DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
1039  }
1040 
1041  DoC_WriteBuf(this, &buf[len256], len - len256);
1042 
1043  DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1044  DoC_Command(this, NAND_CMD_STATUS, 0);
1045  /* DoC_WaitReady() is implicit in DoC_Command */
1046 
1047  if (DoC_is_Millennium(this)) {
1048  ReadDOC(docptr, ReadPipeInit);
1049  status = ReadDOC(docptr, LastDataRead);
1050  } else {
1051  dummy = ReadDOC(docptr, CDSNSlowIO);
1052  DoC_Delay(this, 2);
1053  status = ReadDOC_(docptr, this->ioreg);
1054  }
1055 
1056  if (status & 1) {
1057  printk(KERN_ERR "Error programming oob data\n");
1058  /* There was an error */
1059  *retlen = 0;
1060  return -EIO;
1061  }
1062 
1063  *retlen = len;
1064  return 0;
1065 
1066 }
1067 
1068 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1069  struct mtd_oob_ops *ops)
1070 {
1071  struct DiskOnChip *this = mtd->priv;
1072  int ret;
1073 
1074  BUG_ON(ops->mode != MTD_OPS_PLACE_OOB);
1075 
1076  mutex_lock(&this->lock);
1077  ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len,
1078  &ops->retlen, ops->oobbuf);
1079 
1080  mutex_unlock(&this->lock);
1081  return ret;
1082 }
1083 
1084 static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
1085 {
1086  struct DiskOnChip *this = mtd->priv;
1087  __u32 ofs = instr->addr;
1088  __u32 len = instr->len;
1089  volatile int dummy;
1090  void __iomem *docptr = this->virtadr;
1091  struct Nand *mychip;
1092  int status;
1093 
1094  mutex_lock(&this->lock);
1095 
1096  if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
1097  mutex_unlock(&this->lock);
1098  return -EINVAL;
1099  }
1100 
1101  instr->state = MTD_ERASING;
1102 
1103  /* FIXME: Do this in the background. Use timers or schedule_task() */
1104  while(len) {
1105  mychip = &this->chips[ofs >> this->chipshift];
1106 
1107  if (this->curfloor != mychip->floor) {
1108  DoC_SelectFloor(this, mychip->floor);
1109  DoC_SelectChip(this, mychip->chip);
1110  } else if (this->curchip != mychip->chip) {
1111  DoC_SelectChip(this, mychip->chip);
1112  }
1113  this->curfloor = mychip->floor;
1114  this->curchip = mychip->chip;
1115 
1116  DoC_Command(this, NAND_CMD_ERASE1, 0);
1117  DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
1118  DoC_Command(this, NAND_CMD_ERASE2, 0);
1119 
1120  DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1121 
1122  if (DoC_is_Millennium(this)) {
1123  ReadDOC(docptr, ReadPipeInit);
1124  status = ReadDOC(docptr, LastDataRead);
1125  } else {
1126  dummy = ReadDOC(docptr, CDSNSlowIO);
1127  DoC_Delay(this, 2);
1128  status = ReadDOC_(docptr, this->ioreg);
1129  }
1130 
1131  if (status & 1) {
1132  printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
1133  /* There was an error */
1134  instr->state = MTD_ERASE_FAILED;
1135  goto callback;
1136  }
1137  ofs += mtd->erasesize;
1138  len -= mtd->erasesize;
1139  }
1140  instr->state = MTD_ERASE_DONE;
1141 
1142  callback:
1143  mtd_erase_callback(instr);
1144 
1145  mutex_unlock(&this->lock);
1146  return 0;
1147 }
1148 
1149 
1150 /****************************************************************************
1151  *
1152  * Module stuff
1153  *
1154  ****************************************************************************/
1155 
1156 static void __exit cleanup_doc2000(void)
1157 {
1158  struct mtd_info *mtd;
1159  struct DiskOnChip *this;
1160 
1161  while ((mtd = doc2klist)) {
1162  this = mtd->priv;
1163  doc2klist = this->nextdoc;
1164 
1165  mtd_device_unregister(mtd);
1166 
1167  iounmap(this->virtadr);
1168  kfree(this->chips);
1169  kfree(mtd);
1170  }
1171 }
1172 
1173 module_exit(cleanup_doc2000);
1174 
1175 MODULE_LICENSE("GPL");
1176 MODULE_AUTHOR("David Woodhouse <[email protected]> et al.");
1177 MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
1178