Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hpet.c
Go to the documentation of this file.
1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  * Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  * Bob Picco <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
37 
38 #include <asm/current.h>
39 #include <asm/irq.h>
40 #include <asm/div64.h>
41 
42 #include <linux/acpi.h>
43 #include <acpi/acpi_bus.h>
44 #include <linux/hpet.h>
45 
46 /*
47  * The High Precision Event Timer driver.
48  * This driver is closely modelled after the rtc.c driver.
49  * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
50  */
51 #define HPET_USER_FREQ (64)
52 #define HPET_DRIFT (500)
53 
54 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
55 
56 
57 /* WARNING -- don't get confused. These macros are never used
58  * to write the (single) counter, and rarely to read it.
59  * They're badly named; to fix, someday.
60  */
61 #if BITS_PER_LONG == 64
62 #define write_counter(V, MC) writeq(V, MC)
63 #define read_counter(MC) readq(MC)
64 #else
65 #define write_counter(V, MC) writel(V, MC)
66 #define read_counter(MC) readl(MC)
67 #endif
68 
69 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
71 
72 /* This clocksource driver currently only works on ia64 */
73 #ifdef CONFIG_IA64
74 static void __iomem *hpet_mctr;
75 
76 static cycle_t read_hpet(struct clocksource *cs)
77 {
78  return (cycle_t)read_counter((void __iomem *)hpet_mctr);
79 }
80 
81 static struct clocksource clocksource_hpet = {
82  .name = "hpet",
83  .rating = 250,
84  .read = read_hpet,
85  .mask = CLOCKSOURCE_MASK(64),
87 };
88 static struct clocksource *hpet_clocksource;
89 #endif
90 
91 /* A lock for concurrent access by app and isr hpet activity. */
92 static DEFINE_SPINLOCK(hpet_lock);
93 
94 #define HPET_DEV_NAME (7)
95 
96 struct hpet_dev {
97  struct hpets *hd_hpets;
98  struct hpet __iomem *hd_hpet;
99  struct hpet_timer __iomem *hd_timer;
100  unsigned long hd_ireqfreq;
101  unsigned long hd_irqdata;
104  unsigned int hd_flags;
105  unsigned int hd_irq;
106  unsigned int hd_hdwirq;
108 };
109 
110 struct hpets {
111  struct hpets *hp_next;
113  unsigned long hp_hpet_phys;
115  unsigned long long hp_tick_freq;
116  unsigned long hp_delta;
117  unsigned int hp_ntimer;
118  unsigned int hp_which;
119  struct hpet_dev hp_dev[1];
120 };
121 
122 static struct hpets *hpets;
123 
124 #define HPET_OPEN 0x0001
125 #define HPET_IE 0x0002 /* interrupt enabled */
126 #define HPET_PERIODIC 0x0004
127 #define HPET_SHARED_IRQ 0x0008
128 
129 
130 #ifndef readq
131 static inline unsigned long long readq(void __iomem *addr)
132 {
133  return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
134 }
135 #endif
136 
137 #ifndef writeq
138 static inline void writeq(unsigned long long v, void __iomem *addr)
139 {
140  writel(v & 0xffffffff, addr);
141  writel(v >> 32, addr + 4);
142 }
143 #endif
144 
145 static irqreturn_t hpet_interrupt(int irq, void *data)
146 {
147  struct hpet_dev *devp;
148  unsigned long isr;
149 
150  devp = data;
151  isr = 1 << (devp - devp->hd_hpets->hp_dev);
152 
153  if ((devp->hd_flags & HPET_SHARED_IRQ) &&
154  !(isr & readl(&devp->hd_hpet->hpet_isr)))
155  return IRQ_NONE;
156 
157  spin_lock(&hpet_lock);
158  devp->hd_irqdata++;
159 
160  /*
161  * For non-periodic timers, increment the accumulator.
162  * This has the effect of treating non-periodic like periodic.
163  */
164  if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
165  unsigned long m, t, mc, base, k;
166  struct hpet __iomem *hpet = devp->hd_hpet;
167  struct hpets *hpetp = devp->hd_hpets;
168 
169  t = devp->hd_ireqfreq;
170  m = read_counter(&devp->hd_timer->hpet_compare);
171  mc = read_counter(&hpet->hpet_mc);
172  /* The time for the next interrupt would logically be t + m,
173  * however, if we are very unlucky and the interrupt is delayed
174  * for longer than t then we will completely miss the next
175  * interrupt if we set t + m and an application will hang.
176  * Therefore we need to make a more complex computation assuming
177  * that there exists a k for which the following is true:
178  * k * t + base < mc + delta
179  * (k + 1) * t + base > mc + delta
180  * where t is the interval in hpet ticks for the given freq,
181  * base is the theoretical start value 0 < base < t,
182  * mc is the main counter value at the time of the interrupt,
183  * delta is the time it takes to write the a value to the
184  * comparator.
185  * k may then be computed as (mc - base + delta) / t .
186  */
187  base = mc % t;
188  k = (mc - base + hpetp->hp_delta) / t;
189  write_counter(t * (k + 1) + base,
190  &devp->hd_timer->hpet_compare);
191  }
192 
193  if (devp->hd_flags & HPET_SHARED_IRQ)
194  writel(isr, &devp->hd_hpet->hpet_isr);
195  spin_unlock(&hpet_lock);
196 
198 
200 
201  return IRQ_HANDLED;
202 }
203 
204 static void hpet_timer_set_irq(struct hpet_dev *devp)
205 {
206  unsigned long v;
207  int irq, gsi;
208  struct hpet_timer __iomem *timer;
209 
210  spin_lock_irq(&hpet_lock);
211  if (devp->hd_hdwirq) {
212  spin_unlock_irq(&hpet_lock);
213  return;
214  }
215 
216  timer = devp->hd_timer;
217 
218  /* we prefer level triggered mode */
219  v = readl(&timer->hpet_config);
220  if (!(v & Tn_INT_TYPE_CNF_MASK)) {
222  writel(v, &timer->hpet_config);
223  }
224  spin_unlock_irq(&hpet_lock);
225 
226  v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
228 
229  /*
230  * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
231  * legacy device. In IO APIC mode, we skip all the legacy IRQS.
232  */
233  if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
234  v &= ~0xf3df;
235  else
236  v &= ~0xffff;
237 
238  for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
239  if (irq >= nr_irqs) {
240  irq = HPET_MAX_IRQ;
241  break;
242  }
243 
246  if (gsi > 0)
247  break;
248 
249  /* FIXME: Setup interrupt source table */
250  }
251 
252  if (irq < HPET_MAX_IRQ) {
253  spin_lock_irq(&hpet_lock);
254  v = readl(&timer->hpet_config);
255  v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
256  writel(v, &timer->hpet_config);
257  devp->hd_hdwirq = gsi;
258  spin_unlock_irq(&hpet_lock);
259  }
260  return;
261 }
262 
263 static int hpet_open(struct inode *inode, struct file *file)
264 {
265  struct hpet_dev *devp;
266  struct hpets *hpetp;
267  int i;
268 
269  if (file->f_mode & FMODE_WRITE)
270  return -EINVAL;
271 
272  mutex_lock(&hpet_mutex);
273  spin_lock_irq(&hpet_lock);
274 
275  for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
276  for (i = 0; i < hpetp->hp_ntimer; i++)
277  if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
278  continue;
279  else {
280  devp = &hpetp->hp_dev[i];
281  break;
282  }
283 
284  if (!devp) {
285  spin_unlock_irq(&hpet_lock);
286  mutex_unlock(&hpet_mutex);
287  return -EBUSY;
288  }
289 
290  file->private_data = devp;
291  devp->hd_irqdata = 0;
292  devp->hd_flags |= HPET_OPEN;
293  spin_unlock_irq(&hpet_lock);
294  mutex_unlock(&hpet_mutex);
295 
296  hpet_timer_set_irq(devp);
297 
298  return 0;
299 }
300 
301 static ssize_t
302 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
303 {
305  unsigned long data;
306  ssize_t retval;
307  struct hpet_dev *devp;
308 
309  devp = file->private_data;
310  if (!devp->hd_ireqfreq)
311  return -EIO;
312 
313  if (count < sizeof(unsigned long))
314  return -EINVAL;
315 
316  add_wait_queue(&devp->hd_waitqueue, &wait);
317 
318  for ( ; ; ) {
320 
321  spin_lock_irq(&hpet_lock);
322  data = devp->hd_irqdata;
323  devp->hd_irqdata = 0;
324  spin_unlock_irq(&hpet_lock);
325 
326  if (data)
327  break;
328  else if (file->f_flags & O_NONBLOCK) {
329  retval = -EAGAIN;
330  goto out;
331  } else if (signal_pending(current)) {
332  retval = -ERESTARTSYS;
333  goto out;
334  }
335  schedule();
336  }
337 
338  retval = put_user(data, (unsigned long __user *)buf);
339  if (!retval)
340  retval = sizeof(unsigned long);
341 out:
344 
345  return retval;
346 }
347 
348 static unsigned int hpet_poll(struct file *file, poll_table * wait)
349 {
350  unsigned long v;
351  struct hpet_dev *devp;
352 
353  devp = file->private_data;
354 
355  if (!devp->hd_ireqfreq)
356  return 0;
357 
358  poll_wait(file, &devp->hd_waitqueue, wait);
359 
360  spin_lock_irq(&hpet_lock);
361  v = devp->hd_irqdata;
362  spin_unlock_irq(&hpet_lock);
363 
364  if (v != 0)
365  return POLLIN | POLLRDNORM;
366 
367  return 0;
368 }
369 
370 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
371 {
372 #ifdef CONFIG_HPET_MMAP
373  struct hpet_dev *devp;
374  unsigned long addr;
375 
376  if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
377  return -EINVAL;
378 
379  devp = file->private_data;
380  addr = devp->hd_hpets->hp_hpet_phys;
381 
382  if (addr & (PAGE_SIZE - 1))
383  return -ENOSYS;
384 
385  vma->vm_flags |= VM_IO;
387 
388  if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
389  PAGE_SIZE, vma->vm_page_prot)) {
390  printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
391  __func__);
392  return -EAGAIN;
393  }
394 
395  return 0;
396 #else
397  return -ENOSYS;
398 #endif
399 }
400 
401 static int hpet_fasync(int fd, struct file *file, int on)
402 {
403  struct hpet_dev *devp;
404 
405  devp = file->private_data;
406 
407  if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
408  return 0;
409  else
410  return -EIO;
411 }
412 
413 static int hpet_release(struct inode *inode, struct file *file)
414 {
415  struct hpet_dev *devp;
416  struct hpet_timer __iomem *timer;
417  int irq = 0;
418 
419  devp = file->private_data;
420  timer = devp->hd_timer;
421 
422  spin_lock_irq(&hpet_lock);
423 
424  writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
425  &timer->hpet_config);
426 
427  irq = devp->hd_irq;
428  devp->hd_irq = 0;
429 
430  devp->hd_ireqfreq = 0;
431 
432  if (devp->hd_flags & HPET_PERIODIC
433  && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
434  unsigned long v;
435 
436  v = readq(&timer->hpet_config);
437  v ^= Tn_TYPE_CNF_MASK;
438  writeq(v, &timer->hpet_config);
439  }
440 
441  devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
442  spin_unlock_irq(&hpet_lock);
443 
444  if (irq)
445  free_irq(irq, devp);
446 
447  file->private_data = NULL;
448  return 0;
449 }
450 
451 static int hpet_ioctl_ieon(struct hpet_dev *devp)
452 {
453  struct hpet_timer __iomem *timer;
454  struct hpet __iomem *hpet;
455  struct hpets *hpetp;
456  int irq;
457  unsigned long g, v, t, m;
458  unsigned long flags, isr;
459 
460  timer = devp->hd_timer;
461  hpet = devp->hd_hpet;
462  hpetp = devp->hd_hpets;
463 
464  if (!devp->hd_ireqfreq)
465  return -EIO;
466 
467  spin_lock_irq(&hpet_lock);
468 
469  if (devp->hd_flags & HPET_IE) {
470  spin_unlock_irq(&hpet_lock);
471  return -EBUSY;
472  }
473 
474  devp->hd_flags |= HPET_IE;
475 
476  if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
477  devp->hd_flags |= HPET_SHARED_IRQ;
478  spin_unlock_irq(&hpet_lock);
479 
480  irq = devp->hd_hdwirq;
481 
482  if (irq) {
483  unsigned long irq_flags;
484 
485  if (devp->hd_flags & HPET_SHARED_IRQ) {
486  /*
487  * To prevent the interrupt handler from seeing an
488  * unwanted interrupt status bit, program the timer
489  * so that it will not fire in the near future ...
490  */
491  writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
492  &timer->hpet_config);
493  write_counter(read_counter(&hpet->hpet_mc),
494  &timer->hpet_compare);
495  /* ... and clear any left-over status. */
496  isr = 1 << (devp - devp->hd_hpets->hp_dev);
497  writel(isr, &hpet->hpet_isr);
498  }
499 
500  sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
501  irq_flags = devp->hd_flags & HPET_SHARED_IRQ
503  if (request_irq(irq, hpet_interrupt, irq_flags,
504  devp->hd_name, (void *)devp)) {
505  printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
506  irq = 0;
507  }
508  }
509 
510  if (irq == 0) {
511  spin_lock_irq(&hpet_lock);
512  devp->hd_flags ^= HPET_IE;
513  spin_unlock_irq(&hpet_lock);
514  return -EIO;
515  }
516 
517  devp->hd_irq = irq;
518  t = devp->hd_ireqfreq;
519  v = readq(&timer->hpet_config);
520 
521  /* 64-bit comparators are not yet supported through the ioctls,
522  * so force this into 32-bit mode if it supports both modes
523  */
525 
526  if (devp->hd_flags & HPET_PERIODIC) {
527  g |= Tn_TYPE_CNF_MASK;
529  writeq(v, &timer->hpet_config);
530  local_irq_save(flags);
531 
532  /*
533  * NOTE: First we modify the hidden accumulator
534  * register supported by periodic-capable comparators.
535  * We never want to modify the (single) counter; that
536  * would affect all the comparators. The value written
537  * is the counter value when the first interrupt is due.
538  */
539  m = read_counter(&hpet->hpet_mc);
540  write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
541  /*
542  * Then we modify the comparator, indicating the period
543  * for subsequent interrupt.
544  */
545  write_counter(t, &timer->hpet_compare);
546  } else {
547  local_irq_save(flags);
548  m = read_counter(&hpet->hpet_mc);
549  write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
550  }
551 
552  if (devp->hd_flags & HPET_SHARED_IRQ) {
553  isr = 1 << (devp - devp->hd_hpets->hp_dev);
554  writel(isr, &hpet->hpet_isr);
555  }
556  writeq(g, &timer->hpet_config);
557  local_irq_restore(flags);
558 
559  return 0;
560 }
561 
562 /* converts Hz to number of timer ticks */
563 static inline unsigned long hpet_time_div(struct hpets *hpets,
564  unsigned long dis)
565 {
566  unsigned long long m;
567 
568  m = hpets->hp_tick_freq + (dis >> 1);
569  do_div(m, dis);
570  return (unsigned long)m;
571 }
572 
573 static int
574 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
575  struct hpet_info *info)
576 {
577  struct hpet_timer __iomem *timer;
578  struct hpet __iomem *hpet;
579  struct hpets *hpetp;
580  int err;
581  unsigned long v;
582 
583  switch (cmd) {
584  case HPET_IE_OFF:
585  case HPET_INFO:
586  case HPET_EPI:
587  case HPET_DPI:
588  case HPET_IRQFREQ:
589  timer = devp->hd_timer;
590  hpet = devp->hd_hpet;
591  hpetp = devp->hd_hpets;
592  break;
593  case HPET_IE_ON:
594  return hpet_ioctl_ieon(devp);
595  default:
596  return -EINVAL;
597  }
598 
599  err = 0;
600 
601  switch (cmd) {
602  case HPET_IE_OFF:
603  if ((devp->hd_flags & HPET_IE) == 0)
604  break;
605  v = readq(&timer->hpet_config);
606  v &= ~Tn_INT_ENB_CNF_MASK;
607  writeq(v, &timer->hpet_config);
608  if (devp->hd_irq) {
609  free_irq(devp->hd_irq, devp);
610  devp->hd_irq = 0;
611  }
612  devp->hd_flags ^= HPET_IE;
613  break;
614  case HPET_INFO:
615  {
616  memset(info, 0, sizeof(*info));
617  if (devp->hd_ireqfreq)
618  info->hi_ireqfreq =
619  hpet_time_div(hpetp, devp->hd_ireqfreq);
620  info->hi_flags =
621  readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
622  info->hi_hpet = hpetp->hp_which;
623  info->hi_timer = devp - hpetp->hp_dev;
624  break;
625  }
626  case HPET_EPI:
627  v = readq(&timer->hpet_config);
628  if ((v & Tn_PER_INT_CAP_MASK) == 0) {
629  err = -ENXIO;
630  break;
631  }
632  devp->hd_flags |= HPET_PERIODIC;
633  break;
634  case HPET_DPI:
635  v = readq(&timer->hpet_config);
636  if ((v & Tn_PER_INT_CAP_MASK) == 0) {
637  err = -ENXIO;
638  break;
639  }
640  if (devp->hd_flags & HPET_PERIODIC &&
641  readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
642  v = readq(&timer->hpet_config);
643  v ^= Tn_TYPE_CNF_MASK;
644  writeq(v, &timer->hpet_config);
645  }
646  devp->hd_flags &= ~HPET_PERIODIC;
647  break;
648  case HPET_IRQFREQ:
649  if ((arg > hpet_max_freq) &&
651  err = -EACCES;
652  break;
653  }
654 
655  if (!arg) {
656  err = -EINVAL;
657  break;
658  }
659 
660  devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
661  }
662 
663  return err;
664 }
665 
666 static long
667 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
668 {
669  struct hpet_info info;
670  int err;
671 
672  mutex_lock(&hpet_mutex);
673  err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
674  mutex_unlock(&hpet_mutex);
675 
676  if ((cmd == HPET_INFO) && !err &&
677  (copy_to_user((void __user *)arg, &info, sizeof(info))))
678  err = -EFAULT;
679 
680  return err;
681 }
682 
683 #ifdef CONFIG_COMPAT
684 struct compat_hpet_info {
685  compat_ulong_t hi_ireqfreq; /* Hz */
686  compat_ulong_t hi_flags; /* information */
687  unsigned short hi_hpet;
688  unsigned short hi_timer;
689 };
690 
691 static long
692 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
693 {
694  struct hpet_info info;
695  int err;
696 
697  mutex_lock(&hpet_mutex);
698  err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
699  mutex_unlock(&hpet_mutex);
700 
701  if ((cmd == HPET_INFO) && !err) {
702  struct compat_hpet_info __user *u = compat_ptr(arg);
703  if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
704  put_user(info.hi_flags, &u->hi_flags) ||
705  put_user(info.hi_hpet, &u->hi_hpet) ||
706  put_user(info.hi_timer, &u->hi_timer))
707  err = -EFAULT;
708  }
709 
710  return err;
711 }
712 #endif
713 
714 static const struct file_operations hpet_fops = {
715  .owner = THIS_MODULE,
716  .llseek = no_llseek,
717  .read = hpet_read,
718  .poll = hpet_poll,
719  .unlocked_ioctl = hpet_ioctl,
720 #ifdef CONFIG_COMPAT
721  .compat_ioctl = hpet_compat_ioctl,
722 #endif
723  .open = hpet_open,
724  .release = hpet_release,
725  .fasync = hpet_fasync,
726  .mmap = hpet_mmap,
727 };
728 
729 static int hpet_is_known(struct hpet_data *hdp)
730 {
731  struct hpets *hpetp;
732 
733  for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
734  if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
735  return 1;
736 
737  return 0;
738 }
739 
740 static ctl_table hpet_table[] = {
741  {
742  .procname = "max-user-freq",
743  .data = &hpet_max_freq,
744  .maxlen = sizeof(int),
745  .mode = 0644,
747  },
748  {}
749 };
750 
751 static ctl_table hpet_root[] = {
752  {
753  .procname = "hpet",
754  .maxlen = 0,
755  .mode = 0555,
756  .child = hpet_table,
757  },
758  {}
759 };
760 
761 static ctl_table dev_root[] = {
762  {
763  .procname = "dev",
764  .maxlen = 0,
765  .mode = 0555,
766  .child = hpet_root,
767  },
768  {}
769 };
770 
771 static struct ctl_table_header *sysctl_header;
772 
773 /*
774  * Adjustment for when arming the timer with
775  * initial conditions. That is, main counter
776  * ticks expired before interrupts are enabled.
777  */
778 #define TICK_CALIBRATE (1000UL)
779 
780 static unsigned long __hpet_calibrate(struct hpets *hpetp)
781 {
782  struct hpet_timer __iomem *timer = NULL;
783  unsigned long t, m, count, i, flags, start;
784  struct hpet_dev *devp;
785  int j;
786  struct hpet __iomem *hpet;
787 
788  for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
789  if ((devp->hd_flags & HPET_OPEN) == 0) {
790  timer = devp->hd_timer;
791  break;
792  }
793 
794  if (!timer)
795  return 0;
796 
797  hpet = hpetp->hp_hpet;
798  t = read_counter(&timer->hpet_compare);
799 
800  i = 0;
801  count = hpet_time_div(hpetp, TICK_CALIBRATE);
802 
803  local_irq_save(flags);
804 
805  start = read_counter(&hpet->hpet_mc);
806 
807  do {
808  m = read_counter(&hpet->hpet_mc);
809  write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
810  } while (i++, (m - start) < count);
811 
812  local_irq_restore(flags);
813 
814  return (m - start) / i;
815 }
816 
817 static unsigned long hpet_calibrate(struct hpets *hpetp)
818 {
819  unsigned long ret = -1;
820  unsigned long tmp;
821 
822  /*
823  * Try to calibrate until return value becomes stable small value.
824  * If SMI interruption occurs in calibration loop, the return value
825  * will be big. This avoids its impact.
826  */
827  for ( ; ; ) {
828  tmp = __hpet_calibrate(hpetp);
829  if (ret <= tmp)
830  break;
831  ret = tmp;
832  }
833 
834  return ret;
835 }
836 
837 int hpet_alloc(struct hpet_data *hdp)
838 {
839  u64 cap, mcfg;
840  struct hpet_dev *devp;
841  u32 i, ntimer;
842  struct hpets *hpetp;
843  size_t siz;
844  struct hpet __iomem *hpet;
845  static struct hpets *last;
846  unsigned long period;
847  unsigned long long temp;
848  u32 remainder;
849 
850  /*
851  * hpet_alloc can be called by platform dependent code.
852  * If platform dependent code has allocated the hpet that
853  * ACPI has also reported, then we catch it here.
854  */
855  if (hpet_is_known(hdp)) {
856  printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
857  __func__);
858  return 0;
859  }
860 
861  siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
862  sizeof(struct hpet_dev));
863 
864  hpetp = kzalloc(siz, GFP_KERNEL);
865 
866  if (!hpetp)
867  return -ENOMEM;
868 
869  hpetp->hp_which = hpet_nhpet++;
870  hpetp->hp_hpet = hdp->hd_address;
871  hpetp->hp_hpet_phys = hdp->hd_phys_address;
872 
873  hpetp->hp_ntimer = hdp->hd_nirqs;
874 
875  for (i = 0; i < hdp->hd_nirqs; i++)
876  hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
877 
878  hpet = hpetp->hp_hpet;
879 
880  cap = readq(&hpet->hpet_cap);
881 
882  ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
883 
884  if (hpetp->hp_ntimer != ntimer) {
885  printk(KERN_WARNING "hpet: number irqs doesn't agree"
886  " with number of timers\n");
887  kfree(hpetp);
888  return -ENODEV;
889  }
890 
891  if (last)
892  last->hp_next = hpetp;
893  else
894  hpets = hpetp;
895 
896  last = hpetp;
897 
898  period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
899  HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
900  temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
901  temp += period >> 1; /* round */
902  do_div(temp, period);
903  hpetp->hp_tick_freq = temp; /* ticks per second */
904 
905  printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
906  hpetp->hp_which, hdp->hd_phys_address,
907  hpetp->hp_ntimer > 1 ? "s" : "");
908  for (i = 0; i < hpetp->hp_ntimer; i++)
909  printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
910  printk(KERN_CONT "\n");
911 
912  temp = hpetp->hp_tick_freq;
913  remainder = do_div(temp, 1000000);
915  "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
916  hpetp->hp_which, hpetp->hp_ntimer,
917  cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
918  (unsigned) temp, remainder);
919 
920  mcfg = readq(&hpet->hpet_config);
921  if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
922  write_counter(0L, &hpet->hpet_mc);
923  mcfg |= HPET_ENABLE_CNF_MASK;
924  writeq(mcfg, &hpet->hpet_config);
925  }
926 
927  for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
928  struct hpet_timer __iomem *timer;
929 
930  timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
931 
932  devp->hd_hpets = hpetp;
933  devp->hd_hpet = hpet;
934  devp->hd_timer = timer;
935 
936  /*
937  * If the timer was reserved by platform code,
938  * then make timer unavailable for opens.
939  */
940  if (hdp->hd_state & (1 << i)) {
941  devp->hd_flags = HPET_OPEN;
942  continue;
943  }
944 
946  }
947 
948  hpetp->hp_delta = hpet_calibrate(hpetp);
949 
950 /* This clocksource driver currently only works on ia64 */
951 #ifdef CONFIG_IA64
952  if (!hpet_clocksource) {
953  hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
954  clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
955  clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
956  hpetp->hp_clocksource = &clocksource_hpet;
957  hpet_clocksource = &clocksource_hpet;
958  }
959 #endif
960 
961  return 0;
962 }
963 
964 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
965 {
966  struct hpet_data *hdp;
968  struct acpi_resource_address64 addr;
969 
970  hdp = data;
971 
972  status = acpi_resource_to_address64(res, &addr);
973 
974  if (ACPI_SUCCESS(status)) {
975  hdp->hd_phys_address = addr.minimum;
976  hdp->hd_address = ioremap(addr.minimum, addr.address_length);
977 
978  if (hpet_is_known(hdp)) {
979  iounmap(hdp->hd_address);
980  return AE_ALREADY_EXISTS;
981  }
982  } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
983  struct acpi_resource_fixed_memory32 *fixmem32;
984 
985  fixmem32 = &res->data.fixed_memory32;
986  if (!fixmem32)
987  return AE_NO_MEMORY;
988 
989  hdp->hd_phys_address = fixmem32->address;
990  hdp->hd_address = ioremap(fixmem32->address,
992 
993  if (hpet_is_known(hdp)) {
994  iounmap(hdp->hd_address);
995  return AE_ALREADY_EXISTS;
996  }
997  } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
998  struct acpi_resource_extended_irq *irqp;
999  int i, irq;
1000 
1001  irqp = &res->data.extended_irq;
1002 
1003  for (i = 0; i < irqp->interrupt_count; i++) {
1004  irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1005  irqp->triggering, irqp->polarity);
1006  if (irq < 0)
1007  return AE_ERROR;
1008 
1009  hdp->hd_irq[hdp->hd_nirqs] = irq;
1010  hdp->hd_nirqs++;
1011  }
1012  }
1013 
1014  return AE_OK;
1015 }
1016 
1017 static int hpet_acpi_add(struct acpi_device *device)
1018 {
1020  struct hpet_data data;
1021 
1022  memset(&data, 0, sizeof(data));
1023 
1024  result =
1025  acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1026  hpet_resources, &data);
1027 
1028  if (ACPI_FAILURE(result))
1029  return -ENODEV;
1030 
1031  if (!data.hd_address || !data.hd_nirqs) {
1032  if (data.hd_address)
1033  iounmap(data.hd_address);
1034  printk("%s: no address or irqs in _CRS\n", __func__);
1035  return -ENODEV;
1036  }
1037 
1038  return hpet_alloc(&data);
1039 }
1040 
1041 static int hpet_acpi_remove(struct acpi_device *device, int type)
1042 {
1043  /* XXX need to unregister clocksource, dealloc mem, etc */
1044  return -EINVAL;
1045 }
1046 
1047 static const struct acpi_device_id hpet_device_ids[] = {
1048  {"PNP0103", 0},
1049  {"", 0},
1050 };
1051 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1052 
1053 static struct acpi_driver hpet_acpi_driver = {
1054  .name = "hpet",
1055  .ids = hpet_device_ids,
1056  .ops = {
1057  .add = hpet_acpi_add,
1058  .remove = hpet_acpi_remove,
1059  },
1060 };
1061 
1062 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1063 
1064 static int __init hpet_init(void)
1065 {
1066  int result;
1067 
1068  result = misc_register(&hpet_misc);
1069  if (result < 0)
1070  return -ENODEV;
1071 
1072  sysctl_header = register_sysctl_table(dev_root);
1073 
1074  result = acpi_bus_register_driver(&hpet_acpi_driver);
1075  if (result < 0) {
1076  if (sysctl_header)
1077  unregister_sysctl_table(sysctl_header);
1078  misc_deregister(&hpet_misc);
1079  return result;
1080  }
1081 
1082  return 0;
1083 }
1084 
1085 static void __exit hpet_exit(void)
1086 {
1087  acpi_bus_unregister_driver(&hpet_acpi_driver);
1088 
1089  if (sysctl_header)
1090  unregister_sysctl_table(sysctl_header);
1091  misc_deregister(&hpet_misc);
1092 
1093  return;
1094 }
1095 
1096 module_init(hpet_init);
1097 module_exit(hpet_exit);
1098 MODULE_AUTHOR("Bob Picco <[email protected]>");
1099 MODULE_LICENSE("GPL");