Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i8253.c
Go to the documentation of this file.
1 /*
2  * i8253 PIT clocksource
3  */
4 #include <linux/clockchips.h>
5 #include <linux/init.h>
6 #include <linux/io.h>
7 #include <linux/spinlock.h>
8 #include <linux/timex.h>
9 #include <linux/module.h>
10 #include <linux/i8253.h>
11 #include <linux/smp.h>
12 
13 /*
14  * Protects access to I/O ports
15  *
16  * 0040-0043 : timer0, i8253 / i8254
17  * 0061-0061 : NMI Control Register which contains two speaker control bits.
18  */
19 DEFINE_RAW_SPINLOCK(i8253_lock);
20 EXPORT_SYMBOL(i8253_lock);
21 
22 #ifdef CONFIG_CLKSRC_I8253
23 /*
24  * Since the PIT overflows every tick, its not very useful
25  * to just read by itself. So use jiffies to emulate a free
26  * running counter:
27  */
28 static cycle_t i8253_read(struct clocksource *cs)
29 {
30  static int old_count;
31  static u32 old_jifs;
32  unsigned long flags;
33  int count;
34  u32 jifs;
35 
36  raw_spin_lock_irqsave(&i8253_lock, flags);
37  /*
38  * Although our caller may have the read side of xtime_lock,
39  * this is now a seqlock, and we are cheating in this routine
40  * by having side effects on state that we cannot undo if
41  * there is a collision on the seqlock and our caller has to
42  * retry. (Namely, old_jifs and old_count.) So we must treat
43  * jiffies as volatile despite the lock. We read jiffies
44  * before latching the timer count to guarantee that although
45  * the jiffies value might be older than the count (that is,
46  * the counter may underflow between the last point where
47  * jiffies was incremented and the point where we latch the
48  * count), it cannot be newer.
49  */
50  jifs = jiffies;
51  outb_p(0x00, PIT_MODE); /* latch the count ASAP */
52  count = inb_p(PIT_CH0); /* read the latched count */
53  count |= inb_p(PIT_CH0) << 8;
54 
55  /* VIA686a test code... reset the latch if count > max + 1 */
56  if (count > PIT_LATCH) {
57  outb_p(0x34, PIT_MODE);
58  outb_p(PIT_LATCH & 0xff, PIT_CH0);
59  outb_p(PIT_LATCH >> 8, PIT_CH0);
60  count = PIT_LATCH - 1;
61  }
62 
63  /*
64  * It's possible for count to appear to go the wrong way for a
65  * couple of reasons:
66  *
67  * 1. The timer counter underflows, but we haven't handled the
68  * resulting interrupt and incremented jiffies yet.
69  * 2. Hardware problem with the timer, not giving us continuous time,
70  * the counter does small "jumps" upwards on some Pentium systems,
71  * (see c't 95/10 page 335 for Neptun bug.)
72  *
73  * Previous attempts to handle these cases intelligently were
74  * buggy, so we just do the simple thing now.
75  */
76  if (count > old_count && jifs == old_jifs)
77  count = old_count;
78 
79  old_count = count;
80  old_jifs = jifs;
81 
82  raw_spin_unlock_irqrestore(&i8253_lock, flags);
83 
84  count = (PIT_LATCH - 1) - count;
85 
86  return (cycle_t)(jifs * PIT_LATCH) + count;
87 }
88 
89 static struct clocksource i8253_cs = {
90  .name = "pit",
91  .rating = 110,
92  .read = i8253_read,
93  .mask = CLOCKSOURCE_MASK(32),
94 };
95 
97 {
98  return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE);
99 }
100 #endif
101 
102 #ifdef CONFIG_CLKEVT_I8253
103 /*
104  * Initialize the PIT timer.
105  *
106  * This is also called after resume to bring the PIT into operation again.
107  */
108 static void init_pit_timer(enum clock_event_mode mode,
109  struct clock_event_device *evt)
110 {
111  raw_spin_lock(&i8253_lock);
112 
113  switch (mode) {
114  case CLOCK_EVT_MODE_PERIODIC:
115  /* binary, mode 2, LSB/MSB, ch 0 */
116  outb_p(0x34, PIT_MODE);
117  outb_p(PIT_LATCH & 0xff , PIT_CH0); /* LSB */
118  outb_p(PIT_LATCH >> 8 , PIT_CH0); /* MSB */
119  break;
120 
121  case CLOCK_EVT_MODE_SHUTDOWN:
122  case CLOCK_EVT_MODE_UNUSED:
123  if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
124  evt->mode == CLOCK_EVT_MODE_ONESHOT) {
125  outb_p(0x30, PIT_MODE);
126  outb_p(0, PIT_CH0);
127  outb_p(0, PIT_CH0);
128  }
129  break;
130 
131  case CLOCK_EVT_MODE_ONESHOT:
132  /* One shot setup */
133  outb_p(0x38, PIT_MODE);
134  break;
135 
136  case CLOCK_EVT_MODE_RESUME:
137  /* Nothing to do here */
138  break;
139  }
140  raw_spin_unlock(&i8253_lock);
141 }
142 
143 /*
144  * Program the next event in oneshot mode
145  *
146  * Delta is given in PIT ticks
147  */
148 static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
149 {
150  raw_spin_lock(&i8253_lock);
151  outb_p(delta & 0xff , PIT_CH0); /* LSB */
152  outb_p(delta >> 8 , PIT_CH0); /* MSB */
153  raw_spin_unlock(&i8253_lock);
154 
155  return 0;
156 }
157 
158 /*
159  * On UP the PIT can serve all of the possible timer functions. On SMP systems
160  * it can be solely used for the global tick.
161  */
162 struct clock_event_device i8253_clockevent = {
163  .name = "pit",
164  .features = CLOCK_EVT_FEAT_PERIODIC,
165  .set_mode = init_pit_timer,
166  .set_next_event = pit_next_event,
167 };
168 
169 /*
170  * Initialize the conversion factor and the min/max deltas of the clock event
171  * structure and register the clock event source with the framework.
172  */
173 void __init clockevent_i8253_init(bool oneshot)
174 {
175  if (oneshot)
176  i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT;
177  /*
178  * Start pit with the boot cpu mask. x86 might make it global
179  * when it is used as broadcast device later.
180  */
181  i8253_clockevent.cpumask = cpumask_of(smp_processor_id());
182 
184  0xF, 0x7FFF);
185 }
186 #endif