Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cpuidle.c
Go to the documentation of this file.
1 /*
2  * cpuidle.c - core cpuidle infrastructure
3  *
4  * (C) 2006-2007 Venkatesh Pallipadi <[email protected]>
5  * Shaohua Li <[email protected]>
6  * Adam Belay <[email protected]>
7  *
8  * This code is licenced under the GPL.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>
14 #include <linux/notifier.h>
15 #include <linux/pm_qos.h>
16 #include <linux/cpu.h>
17 #include <linux/cpuidle.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/module.h>
21 #include <trace/events/power.h>
22 
23 #include "cpuidle.h"
24 
25 DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
26 
27 DEFINE_MUTEX(cpuidle_lock);
28 LIST_HEAD(cpuidle_detected_devices);
29 
30 static int enabled_devices;
31 static int off __read_mostly;
32 static int initialized __read_mostly;
33 
35 {
36  return off;
37 }
38 void disable_cpuidle(void)
39 {
40  off = 1;
41 }
42 
43 static int __cpuidle_register_device(struct cpuidle_device *dev);
44 
45 static inline int cpuidle_enter(struct cpuidle_device *dev,
46  struct cpuidle_driver *drv, int index)
47 {
48  struct cpuidle_state *target_state = &drv->states[index];
49  return target_state->enter(dev, drv, index);
50 }
51 
52 static inline int cpuidle_enter_tk(struct cpuidle_device *dev,
53  struct cpuidle_driver *drv, int index)
54 {
55  return cpuidle_wrap_enter(dev, drv, index, cpuidle_enter);
56 }
57 
59  struct cpuidle_driver *drv, int index);
60 
61 static cpuidle_enter_t cpuidle_enter_ops;
62 
69 {
70  struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
71  struct cpuidle_driver *drv = cpuidle_get_driver();
72  int i, dead_state = -1;
73  int power_usage = -1;
74 
75  if (!drv)
76  return -ENODEV;
77 
78  /* Find lowest-power state that supports long-term idle */
79  for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
80  struct cpuidle_state *s = &drv->states[i];
81 
82  if (s->power_usage < power_usage && s->enter_dead) {
83  power_usage = s->power_usage;
84  dead_state = i;
85  }
86  }
87 
88  if (dead_state != -1)
89  return drv->states[dead_state].enter_dead(dev, dead_state);
90 
91  return -ENODEV;
92 }
93 
100 int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
101  int next_state)
102 {
103  int entered_state;
104 
105  entered_state = cpuidle_enter_ops(dev, drv, next_state);
106 
107  if (entered_state >= 0) {
108  /* Update cpuidle counters */
109  /* This can be moved to within driver enter routine
110  * but that results in multiple copies of same code.
111  */
112  dev->states_usage[entered_state].time +=
113  (unsigned long long)dev->last_residency;
114  dev->states_usage[entered_state].usage++;
115  } else {
116  dev->last_residency = 0;
117  }
118 
119  return entered_state;
120 }
121 
129 {
130  struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices);
131  struct cpuidle_driver *drv = cpuidle_get_driver();
132  int next_state, entered_state;
133 
134  if (off)
135  return -ENODEV;
136 
137  if (!initialized)
138  return -ENODEV;
139 
140  /* check if the device is ready */
141  if (!dev || !dev->enabled)
142  return -EBUSY;
143 
144  /* ask the governor for the next state */
145  next_state = cpuidle_curr_governor->select(drv, dev);
146  if (need_resched()) {
148  return 0;
149  }
150 
151  trace_power_start_rcuidle(POWER_CSTATE, next_state, dev->cpu);
152  trace_cpu_idle_rcuidle(next_state, dev->cpu);
153 
154  if (cpuidle_state_is_coupled(dev, drv, next_state))
155  entered_state = cpuidle_enter_state_coupled(dev, drv,
156  next_state);
157  else
158  entered_state = cpuidle_enter_state(dev, drv, next_state);
159 
160  trace_power_end_rcuidle(dev->cpu);
161  trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu);
162 
163  /* give the governor an opportunity to reflect on the outcome */
164  if (cpuidle_curr_governor->reflect)
165  cpuidle_curr_governor->reflect(dev, entered_state);
166 
167  return 0;
168 }
169 
174 {
175  if (enabled_devices) {
176  /* Make sure all changes finished before we switch to new idle */
177  smp_wmb();
178  initialized = 1;
179  }
180 }
181 
186 {
187  if (enabled_devices) {
188  initialized = 0;
190  }
191 }
192 
197 {
200 }
201 
203 
208 {
211 }
212 
214 
215 /* Currently used in suspend/resume path to suspend cpuidle */
216 void cpuidle_pause(void)
217 {
221 }
222 
223 /* Currently used in suspend/resume path to resume cpuidle */
224 void cpuidle_resume(void)
225 {
229 }
230 
238  struct cpuidle_driver *drv, int index,
239  int (*enter)(struct cpuidle_device *dev,
240  struct cpuidle_driver *drv, int index))
241 {
242  ktime_t time_start, time_end;
243  s64 diff;
244 
245  time_start = ktime_get();
246 
247  index = enter(dev, drv, index);
248 
249  time_end = ktime_get();
250 
252 
253  diff = ktime_to_us(ktime_sub(time_end, time_start));
254  if (diff > INT_MAX)
255  diff = INT_MAX;
256 
257  dev->last_residency = (int) diff;
258 
259  return index;
260 }
261 
262 #ifdef CONFIG_ARCH_HAS_CPU_RELAX
263 static int poll_idle(struct cpuidle_device *dev,
264  struct cpuidle_driver *drv, int index)
265 {
266  ktime_t t1, t2;
267  s64 diff;
268 
269  t1 = ktime_get();
271  while (!need_resched())
272  cpu_relax();
273 
274  t2 = ktime_get();
275  diff = ktime_to_us(ktime_sub(t2, t1));
276  if (diff > INT_MAX)
277  diff = INT_MAX;
278 
279  dev->last_residency = (int) diff;
280 
281  return index;
282 }
283 
284 static void poll_idle_init(struct cpuidle_driver *drv)
285 {
286  struct cpuidle_state *state = &drv->states[0];
287 
288  snprintf(state->name, CPUIDLE_NAME_LEN, "POLL");
289  snprintf(state->desc, CPUIDLE_DESC_LEN, "CPUIDLE CORE POLL IDLE");
290  state->exit_latency = 0;
291  state->target_residency = 0;
292  state->power_usage = -1;
293  state->flags = 0;
294  state->enter = poll_idle;
295  state->disabled = false;
296 }
297 #else
298 static void poll_idle_init(struct cpuidle_driver *drv) {}
299 #endif /* CONFIG_ARCH_HAS_CPU_RELAX */
300 
309 {
310  int ret, i;
311  struct cpuidle_driver *drv = cpuidle_get_driver();
312 
313  if (!dev)
314  return -EINVAL;
315 
316  if (dev->enabled)
317  return 0;
318  if (!drv || !cpuidle_curr_governor)
319  return -EIO;
320  if (!dev->state_count)
321  dev->state_count = drv->state_count;
322 
323  if (dev->registered == 0) {
324  ret = __cpuidle_register_device(dev);
325  if (ret)
326  return ret;
327  }
328 
329  cpuidle_enter_ops = drv->en_core_tk_irqen ?
330  cpuidle_enter_tk : cpuidle_enter;
331 
332  poll_idle_init(drv);
333 
334  if ((ret = cpuidle_add_state_sysfs(dev)))
335  return ret;
336 
337  if (cpuidle_curr_governor->enable &&
338  (ret = cpuidle_curr_governor->enable(drv, dev)))
339  goto fail_sysfs;
340 
341  for (i = 0; i < dev->state_count; i++) {
342  dev->states_usage[i].usage = 0;
343  dev->states_usage[i].time = 0;
344  }
345  dev->last_residency = 0;
346 
347  smp_wmb();
348 
349  dev->enabled = 1;
350 
351  enabled_devices++;
352  return 0;
353 
354 fail_sysfs:
356 
357  return ret;
358 }
359 
361 
370 {
371  if (!dev || !dev->enabled)
372  return;
374  return;
375 
376  dev->enabled = 0;
377 
378  if (cpuidle_curr_governor->disable)
379  cpuidle_curr_governor->disable(cpuidle_get_driver(), dev);
380 
382  enabled_devices--;
383 }
384 
386 
394 static int __cpuidle_register_device(struct cpuidle_device *dev)
395 {
396  int ret;
397  struct device *cpu_dev = get_cpu_device((unsigned long)dev->cpu);
399 
400  if (!try_module_get(cpuidle_driver->owner))
401  return -EINVAL;
402 
403  init_completion(&dev->kobj_unregister);
404 
405  per_cpu(cpuidle_devices, dev->cpu) = dev;
406  list_add(&dev->device_list, &cpuidle_detected_devices);
407  ret = cpuidle_add_sysfs(cpu_dev);
408  if (ret)
409  goto err_sysfs;
410 
412  if (ret)
413  goto err_coupled;
414 
415  dev->registered = 1;
416  return 0;
417 
418 err_coupled:
419  cpuidle_remove_sysfs(cpu_dev);
421 err_sysfs:
422  list_del(&dev->device_list);
423  per_cpu(cpuidle_devices, dev->cpu) = NULL;
424  module_put(cpuidle_driver->owner);
425  return ret;
426 }
427 
433 {
434  int ret;
435 
436  if (!dev)
437  return -EINVAL;
438 
440 
441  if ((ret = __cpuidle_register_device(dev))) {
443  return ret;
444  }
445 
448 
450 
451  return 0;
452 
453 }
454 
456 
462 {
463  struct device *cpu_dev = get_cpu_device((unsigned long)dev->cpu);
464  struct cpuidle_driver *cpuidle_driver = cpuidle_get_driver();
465 
466  if (dev->registered == 0)
467  return;
468 
470 
472 
473  cpuidle_remove_sysfs(cpu_dev);
474  list_del(&dev->device_list);
476  per_cpu(cpuidle_devices, dev->cpu) = NULL;
477 
479 
481 
482  module_put(cpuidle_driver->owner);
483 }
484 
486 
487 #ifdef CONFIG_SMP
488 
489 static void smp_callback(void *v)
490 {
491  /* we already woke the CPU up, nothing more to do */
492 }
493 
494 /*
495  * This function gets called when a part of the kernel has a new latency
496  * requirement. This means we need to get all processors out of their C-state,
497  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
498  * wakes them all right up.
499  */
500 static int cpuidle_latency_notify(struct notifier_block *b,
501  unsigned long l, void *v)
502 {
503  smp_call_function(smp_callback, NULL, 1);
504  return NOTIFY_OK;
505 }
506 
507 static struct notifier_block cpuidle_latency_notifier = {
508  .notifier_call = cpuidle_latency_notify,
509 };
510 
511 static inline void latency_notifier_init(struct notifier_block *n)
512 {
514 }
515 
516 #else /* CONFIG_SMP */
517 
518 #define latency_notifier_init(x) do { } while (0)
519 
520 #endif /* CONFIG_SMP */
521 
525 static int __init cpuidle_init(void)
526 {
527  int ret;
528 
529  if (cpuidle_disabled())
530  return -ENODEV;
531 
532  ret = cpuidle_add_interface(cpu_subsys.dev_root);
533  if (ret)
534  return ret;
535 
536  latency_notifier_init(&cpuidle_latency_notifier);
537 
538  return 0;
539 }
540 
541 module_param(off, int, 0444);
542 core_initcall(cpuidle_init);