Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
menu.c
Go to the documentation of this file.
1 /*
2  * menu.c - the menu idle governor
3  *
4  * Copyright (C) 2006-2007 Adam Belay <[email protected]>
5  * Copyright (C) 2009 Intel Corporation
6  * Author:
7  * Arjan van de Ven <[email protected]>
8  *
9  * This code is licenced under the GPL version 2 as described
10  * in the COPYING file that acompanies the Linux Kernel.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/pm_qos.h>
16 #include <linux/time.h>
17 #include <linux/ktime.h>
18 #include <linux/hrtimer.h>
19 #include <linux/tick.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/module.h>
23 
24 #define BUCKETS 12
25 #define INTERVALS 8
26 #define RESOLUTION 1024
27 #define DECAY 8
28 #define MAX_INTERESTING 50000
29 #define STDDEV_THRESH 400
30 
31 
32 /*
33  * Concepts and ideas behind the menu governor
34  *
35  * For the menu governor, there are 3 decision factors for picking a C
36  * state:
37  * 1) Energy break even point
38  * 2) Performance impact
39  * 3) Latency tolerance (from pmqos infrastructure)
40  * These these three factors are treated independently.
41  *
42  * Energy break even point
43  * -----------------------
44  * C state entry and exit have an energy cost, and a certain amount of time in
45  * the C state is required to actually break even on this cost. CPUIDLE
46  * provides us this duration in the "target_residency" field. So all that we
47  * need is a good prediction of how long we'll be idle. Like the traditional
48  * menu governor, we start with the actual known "next timer event" time.
49  *
50  * Since there are other source of wakeups (interrupts for example) than
51  * the next timer event, this estimation is rather optimistic. To get a
52  * more realistic estimate, a correction factor is applied to the estimate,
53  * that is based on historic behavior. For example, if in the past the actual
54  * duration always was 50% of the next timer tick, the correction factor will
55  * be 0.5.
56  *
57  * menu uses a running average for this correction factor, however it uses a
58  * set of factors, not just a single factor. This stems from the realization
59  * that the ratio is dependent on the order of magnitude of the expected
60  * duration; if we expect 500 milliseconds of idle time the likelihood of
61  * getting an interrupt very early is much higher than if we expect 50 micro
62  * seconds of idle time. A second independent factor that has big impact on
63  * the actual factor is if there is (disk) IO outstanding or not.
64  * (as a special twist, we consider every sleep longer than 50 milliseconds
65  * as perfect; there are no power gains for sleeping longer than this)
66  *
67  * For these two reasons we keep an array of 12 independent factors, that gets
68  * indexed based on the magnitude of the expected duration as well as the
69  * "is IO outstanding" property.
70  *
71  * Repeatable-interval-detector
72  * ----------------------------
73  * There are some cases where "next timer" is a completely unusable predictor:
74  * Those cases where the interval is fixed, for example due to hardware
75  * interrupt mitigation, but also due to fixed transfer rate devices such as
76  * mice.
77  * For this, we use a different predictor: We track the duration of the last 8
78  * intervals and if the stand deviation of these 8 intervals is below a
79  * threshold value, we use the average of these intervals as prediction.
80  *
81  * Limiting Performance Impact
82  * ---------------------------
83  * C states, especially those with large exit latencies, can have a real
84  * noticeable impact on workloads, which is not acceptable for most sysadmins,
85  * and in addition, less performance has a power price of its own.
86  *
87  * As a general rule of thumb, menu assumes that the following heuristic
88  * holds:
89  * The busier the system, the less impact of C states is acceptable
90  *
91  * This rule-of-thumb is implemented using a performance-multiplier:
92  * If the exit latency times the performance multiplier is longer than
93  * the predicted duration, the C state is not considered a candidate
94  * for selection due to a too high performance impact. So the higher
95  * this multiplier is, the longer we need to be idle to pick a deep C
96  * state, and thus the less likely a busy CPU will hit such a deep
97  * C state.
98  *
99  * Two factors are used in determing this multiplier:
100  * a value of 10 is added for each point of "per cpu load average" we have.
101  * a value of 5 points is added for each process that is waiting for
102  * IO on this CPU.
103  * (these values are experimentally determined)
104  *
105  * The load average factor gives a longer term (few seconds) input to the
106  * decision, while the iowait value gives a cpu local instantanious input.
107  * The iowait factor may look low, but realize that this is also already
108  * represented in the system load average.
109  *
110  */
111 
112 struct menu_device {
115 
116  unsigned int expected_us;
118  unsigned int exit_us;
119  unsigned int bucket;
123 };
124 
125 
126 #define LOAD_INT(x) ((x) >> FSHIFT)
127 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
128 
129 static int get_loadavg(void)
130 {
131  unsigned long this = this_cpu_load();
132 
133 
134  return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
135 }
136 
137 static inline int which_bucket(unsigned int duration)
138 {
139  int bucket = 0;
140 
141  /*
142  * We keep two groups of stats; one with no
143  * IO pending, one without.
144  * This allows us to calculate
145  * E(duration)|iowait
146  */
148  bucket = BUCKETS/2;
149 
150  if (duration < 10)
151  return bucket;
152  if (duration < 100)
153  return bucket + 1;
154  if (duration < 1000)
155  return bucket + 2;
156  if (duration < 10000)
157  return bucket + 3;
158  if (duration < 100000)
159  return bucket + 4;
160  return bucket + 5;
161 }
162 
163 /*
164  * Return a multiplier for the exit latency that is intended
165  * to take performance requirements into account.
166  * The more performance critical we estimate the system
167  * to be, the higher this multiplier, and thus the higher
168  * the barrier to go to an expensive C state.
169  */
170 static inline int performance_multiplier(void)
171 {
172  int mult = 1;
173 
174  /* for higher loadavg, we are more reluctant */
175 
176  mult += 2 * get_loadavg();
177 
178  /* for IO wait tasks (per cpu!) we add 5x each */
179  mult += 10 * nr_iowait_cpu(smp_processor_id());
180 
181  return mult;
182 }
183 
184 static DEFINE_PER_CPU(struct menu_device, menu_devices);
185 
186 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
187 
188 /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
189 static u64 div_round64(u64 dividend, u32 divisor)
190 {
191  return div_u64(dividend + (divisor / 2), divisor);
192 }
193 
194 /*
195  * Try detecting repeating patterns by keeping track of the last 8
196  * intervals, and checking if the standard deviation of that set
197  * of points is below a threshold. If it is... then use the
198  * average of these 8 points as the estimated value.
199  */
200 static void detect_repeating_patterns(struct menu_device *data)
201 {
202  int i;
203  uint64_t avg = 0;
204  uint64_t stddev = 0; /* contains the square of the std deviation */
205 
206  /* first calculate average and standard deviation of the past */
207  for (i = 0; i < INTERVALS; i++)
208  avg += data->intervals[i];
209  avg = avg / INTERVALS;
210 
211  /* if the avg is beyond the known next tick, it's worthless */
212  if (avg > data->expected_us)
213  return;
214 
215  for (i = 0; i < INTERVALS; i++)
216  stddev += (data->intervals[i] - avg) *
217  (data->intervals[i] - avg);
218 
219  stddev = stddev / INTERVALS;
220 
221  /*
222  * now.. if stddev is small.. then assume we have a
223  * repeating pattern and predict we keep doing this.
224  */
225 
226  if (avg && stddev < STDDEV_THRESH)
227  data->predicted_us = avg;
228 }
229 
235 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
236 {
237  struct menu_device *data = &__get_cpu_var(menu_devices);
238  int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
239  int power_usage = -1;
240  int i;
241  int multiplier;
242  struct timespec t;
243 
244  if (data->needs_update) {
245  menu_update(drv, dev);
246  data->needs_update = 0;
247  }
248 
249  data->last_state_idx = 0;
250  data->exit_us = 0;
251 
252  /* Special case when user has set very strict latency requirement */
253  if (unlikely(latency_req == 0))
254  return 0;
255 
256  /* determine the expected residency time, round up */
257  t = ktime_to_timespec(tick_nohz_get_sleep_length());
258  data->expected_us =
259  t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
260 
261 
262  data->bucket = which_bucket(data->expected_us);
263 
264  multiplier = performance_multiplier();
265 
266  /*
267  * if the correction factor is 0 (eg first time init or cpu hotplug
268  * etc), we actually want to start out with a unity factor.
269  */
270  if (data->correction_factor[data->bucket] == 0)
271  data->correction_factor[data->bucket] = RESOLUTION * DECAY;
272 
273  /* Make sure to round up for half microseconds */
274  data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
275  RESOLUTION * DECAY);
276 
277  detect_repeating_patterns(data);
278 
279  /*
280  * We want to default to C1 (hlt), not to busy polling
281  * unless the timer is happening really really soon.
282  */
283  if (data->expected_us > 5 &&
284  !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
285  dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
287 
288  /*
289  * Find the idle state with the lowest power while satisfying
290  * our constraints.
291  */
292  for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
293  struct cpuidle_state *s = &drv->states[i];
294  struct cpuidle_state_usage *su = &dev->states_usage[i];
295 
296  if (s->disabled || su->disable)
297  continue;
298  if (s->target_residency > data->predicted_us)
299  continue;
300  if (s->exit_latency > latency_req)
301  continue;
302  if (s->exit_latency * multiplier > data->predicted_us)
303  continue;
304 
305  if (s->power_usage < power_usage) {
306  power_usage = s->power_usage;
307  data->last_state_idx = i;
308  data->exit_us = s->exit_latency;
309  }
310  }
311 
312  return data->last_state_idx;
313 }
314 
323 static void menu_reflect(struct cpuidle_device *dev, int index)
324 {
325  struct menu_device *data = &__get_cpu_var(menu_devices);
326  data->last_state_idx = index;
327  if (index >= 0)
328  data->needs_update = 1;
329 }
330 
336 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
337 {
338  struct menu_device *data = &__get_cpu_var(menu_devices);
339  int last_idx = data->last_state_idx;
340  unsigned int last_idle_us = cpuidle_get_last_residency(dev);
341  struct cpuidle_state *target = &drv->states[last_idx];
342  unsigned int measured_us;
343  u64 new_factor;
344 
345  /*
346  * Ugh, this idle state doesn't support residency measurements, so we
347  * are basically lost in the dark. As a compromise, assume we slept
348  * for the whole expected time.
349  */
350  if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
351  last_idle_us = data->expected_us;
352 
353 
354  measured_us = last_idle_us;
355 
356  /*
357  * We correct for the exit latency; we are assuming here that the
358  * exit latency happens after the event that we're interested in.
359  */
360  if (measured_us > data->exit_us)
361  measured_us -= data->exit_us;
362 
363 
364  /* update our correction ratio */
365 
366  new_factor = data->correction_factor[data->bucket]
367  * (DECAY - 1) / DECAY;
368 
369  if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
370  new_factor += RESOLUTION * measured_us / data->expected_us;
371  else
372  /*
373  * we were idle so long that we count it as a perfect
374  * prediction
375  */
376  new_factor += RESOLUTION;
377 
378  /*
379  * We don't want 0 as factor; we always want at least
380  * a tiny bit of estimated time.
381  */
382  if (new_factor == 0)
383  new_factor = 1;
384 
385  data->correction_factor[data->bucket] = new_factor;
386 
387  /* update the repeating-pattern data */
388  data->intervals[data->interval_ptr++] = last_idle_us;
389  if (data->interval_ptr >= INTERVALS)
390  data->interval_ptr = 0;
391 }
392 
398 static int menu_enable_device(struct cpuidle_driver *drv,
399  struct cpuidle_device *dev)
400 {
401  struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
402 
403  memset(data, 0, sizeof(struct menu_device));
404 
405  return 0;
406 }
407 
408 static struct cpuidle_governor menu_governor = {
409  .name = "menu",
410  .rating = 20,
411  .enable = menu_enable_device,
412  .select = menu_select,
413  .reflect = menu_reflect,
414  .owner = THIS_MODULE,
415 };
416 
420 static int __init init_menu(void)
421 {
422  return cpuidle_register_governor(&menu_governor);
423 }
424 
428 static void __exit exit_menu(void)
429 {
430  cpuidle_unregister_governor(&menu_governor);
431 }
432 
433 MODULE_LICENSE("GPL");
434 module_init(init_menu);
435 module_exit(exit_menu);