Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inode.c
Go to the documentation of this file.
1 /*
2  * fs/logfs/inode.c - inode handling code
3  *
4  * As should be obvious for Linux kernel code, license is GPLv2
5  *
6  * Copyright (c) 2005-2008 Joern Engel <[email protected]>
7  */
8 #include "logfs.h"
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/backing-dev.h>
12 
13 /*
14  * How soon to reuse old inode numbers? LogFS doesn't store deleted inodes
15  * on the medium. It therefore also lacks a method to store the previous
16  * generation number for deleted inodes. Instead a single generation number
17  * is stored which will be used for new inodes. Being just a 32bit counter,
18  * this can obvious wrap relatively quickly. So we only reuse inodes if we
19  * know that a fair number of inodes can be created before we have to increment
20  * the generation again - effectively adding some bits to the counter.
21  * But being too aggressive here means we keep a very large and very sparse
22  * inode file, wasting space on indirect blocks.
23  * So what is a good value? Beats me. 64k seems moderately bad on both
24  * fronts, so let's use that for now...
25  *
26  * NFS sucks, as everyone already knows.
27  */
28 #define INOS_PER_WRAP (0x10000)
29 
30 /*
31  * Logfs' requirement to read inodes for garbage collection makes life a bit
32  * harder. GC may have to read inodes that are in I_FREEING state, when they
33  * are being written out - and waiting for GC to make progress, naturally.
34  *
35  * So we cannot just call iget() or some variant of it, but first have to check
36  * wether the inode in question might be in I_FREEING state. Therefore we
37  * maintain our own per-sb list of "almost deleted" inodes and check against
38  * that list first. Normally this should be at most 1-2 entries long.
39  *
40  * Also, inodes have logfs-specific reference counting on top of what the vfs
41  * does. When .destroy_inode is called, normally the reference count will drop
42  * to zero and the inode gets deleted. But if GC accessed the inode, its
43  * refcount will remain nonzero and final deletion will have to wait.
44  *
45  * As a result we have two sets of functions to get/put inodes:
46  * logfs_safe_iget/logfs_safe_iput - safe to call from GC context
47  * logfs_iget/iput - normal version
48  */
49 static struct kmem_cache *logfs_inode_cache;
50 
51 static DEFINE_SPINLOCK(logfs_inode_lock);
52 
53 static void logfs_inode_setops(struct inode *inode)
54 {
55  switch (inode->i_mode & S_IFMT) {
56  case S_IFDIR:
57  inode->i_op = &logfs_dir_iops;
58  inode->i_fop = &logfs_dir_fops;
59  inode->i_mapping->a_ops = &logfs_reg_aops;
60  break;
61  case S_IFREG:
62  inode->i_op = &logfs_reg_iops;
63  inode->i_fop = &logfs_reg_fops;
64  inode->i_mapping->a_ops = &logfs_reg_aops;
65  break;
66  case S_IFLNK:
67  inode->i_op = &logfs_symlink_iops;
68  inode->i_mapping->a_ops = &logfs_reg_aops;
69  break;
70  case S_IFSOCK: /* fall through */
71  case S_IFBLK: /* fall through */
72  case S_IFCHR: /* fall through */
73  case S_IFIFO:
74  init_special_inode(inode, inode->i_mode, inode->i_rdev);
75  break;
76  default:
77  BUG();
78  }
79 }
80 
81 static struct inode *__logfs_iget(struct super_block *sb, ino_t ino)
82 {
83  struct inode *inode = iget_locked(sb, ino);
84  int err;
85 
86  if (!inode)
87  return ERR_PTR(-ENOMEM);
88  if (!(inode->i_state & I_NEW))
89  return inode;
90 
91  err = logfs_read_inode(inode);
92  if (err || inode->i_nlink == 0) {
93  /* inode->i_nlink == 0 can be true when called from
94  * block validator */
95  /* set i_nlink to 0 to prevent caching */
96  clear_nlink(inode);
98  iget_failed(inode);
99  if (!err)
100  err = -ENOENT;
101  return ERR_PTR(err);
102  }
103 
104  logfs_inode_setops(inode);
105  unlock_new_inode(inode);
106  return inode;
107 }
108 
109 struct inode *logfs_iget(struct super_block *sb, ino_t ino)
110 {
111  BUG_ON(ino == LOGFS_INO_MASTER);
112  BUG_ON(ino == LOGFS_INO_SEGFILE);
113  return __logfs_iget(sb, ino);
114 }
115 
116 /*
117  * is_cached is set to 1 if we hand out a cached inode, 0 otherwise.
118  * this allows logfs_iput to do the right thing later
119  */
120 struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached)
121 {
122  struct logfs_super *super = logfs_super(sb);
123  struct logfs_inode *li;
124 
125  if (ino == LOGFS_INO_MASTER)
126  return super->s_master_inode;
127  if (ino == LOGFS_INO_SEGFILE)
128  return super->s_segfile_inode;
129 
130  spin_lock(&logfs_inode_lock);
132  if (li->vfs_inode.i_ino == ino) {
133  li->li_refcount++;
134  spin_unlock(&logfs_inode_lock);
135  *is_cached = 1;
136  return &li->vfs_inode;
137  }
138  spin_unlock(&logfs_inode_lock);
139 
140  *is_cached = 0;
141  return __logfs_iget(sb, ino);
142 }
143 
144 static void logfs_i_callback(struct rcu_head *head)
145 {
146  struct inode *inode = container_of(head, struct inode, i_rcu);
147  kmem_cache_free(logfs_inode_cache, logfs_inode(inode));
148 }
149 
150 static void __logfs_destroy_inode(struct inode *inode)
151 {
152  struct logfs_inode *li = logfs_inode(inode);
153 
154  BUG_ON(li->li_block);
156  call_rcu(&inode->i_rcu, logfs_i_callback);
157 }
158 
159 static void __logfs_destroy_meta_inode(struct inode *inode)
160 {
161  struct logfs_inode *li = logfs_inode(inode);
162  BUG_ON(li->li_block);
163  call_rcu(&inode->i_rcu, logfs_i_callback);
164 }
165 
166 static void logfs_destroy_inode(struct inode *inode)
167 {
168  struct logfs_inode *li = logfs_inode(inode);
169 
170  if (inode->i_ino < LOGFS_RESERVED_INOS) {
171  /*
172  * The reserved inodes are never destroyed unless we are in
173  * unmont path.
174  */
175  __logfs_destroy_meta_inode(inode);
176  return;
177  }
178 
179  BUG_ON(list_empty(&li->li_freeing_list));
180  spin_lock(&logfs_inode_lock);
181  li->li_refcount--;
182  if (li->li_refcount == 0)
183  __logfs_destroy_inode(inode);
184  spin_unlock(&logfs_inode_lock);
185 }
186 
187 void logfs_safe_iput(struct inode *inode, int is_cached)
188 {
189  if (inode->i_ino == LOGFS_INO_MASTER)
190  return;
191  if (inode->i_ino == LOGFS_INO_SEGFILE)
192  return;
193 
194  if (is_cached) {
195  logfs_destroy_inode(inode);
196  return;
197  }
198 
199  iput(inode);
200 }
201 
202 static void logfs_init_inode(struct super_block *sb, struct inode *inode)
203 {
204  struct logfs_inode *li = logfs_inode(inode);
205  int i;
206 
207  li->li_flags = 0;
208  li->li_height = 0;
209  li->li_used_bytes = 0;
210  li->li_block = NULL;
211  i_uid_write(inode, 0);
212  i_gid_write(inode, 0);
213  inode->i_size = 0;
214  inode->i_blocks = 0;
215  inode->i_ctime = CURRENT_TIME;
216  inode->i_mtime = CURRENT_TIME;
217  li->li_refcount = 1;
218  INIT_LIST_HEAD(&li->li_freeing_list);
219 
220  for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
221  li->li_data[i] = 0;
222 
223  return;
224 }
225 
226 static struct inode *logfs_alloc_inode(struct super_block *sb)
227 {
228  struct logfs_inode *li;
229 
230  li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS);
231  if (!li)
232  return NULL;
233  logfs_init_inode(sb, &li->vfs_inode);
234  return &li->vfs_inode;
235 }
236 
237 /*
238  * In logfs inodes are written to an inode file. The inode file, like any
239  * other file, is managed with a inode. The inode file's inode, aka master
240  * inode, requires special handling in several respects. First, it cannot be
241  * written to the inode file, so it is stored in the journal instead.
242  *
243  * Secondly, this inode cannot be written back and destroyed before all other
244  * inodes have been written. The ordering is important. Linux' VFS is happily
245  * unaware of the ordering constraint and would ordinarily destroy the master
246  * inode at umount time while other inodes are still in use and dirty. Not
247  * good.
248  *
249  * So logfs makes sure the master inode is not written until all other inodes
250  * have been destroyed. Sadly, this method has another side-effect. The VFS
251  * will notice one remaining inode and print a frightening warning message.
252  * Worse, it is impossible to judge whether such a warning was caused by the
253  * master inode or any other inodes have leaked as well.
254  *
255  * Our attempt of solving this is with logfs_new_meta_inode() below. Its
256  * purpose is to create a new inode that will not trigger the warning if such
257  * an inode is still in use. An ugly hack, no doubt. Suggections for
258  * improvement are welcome.
259  *
260  * AV: that's what ->put_super() is for...
261  */
262 struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino)
263 {
264  struct inode *inode;
265 
266  inode = new_inode(sb);
267  if (!inode)
268  return ERR_PTR(-ENOMEM);
269 
270  inode->i_mode = S_IFREG;
271  inode->i_ino = ino;
272  inode->i_data.a_ops = &logfs_reg_aops;
273  mapping_set_gfp_mask(&inode->i_data, GFP_NOFS);
274 
275  return inode;
276 }
277 
278 struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino)
279 {
280  struct inode *inode;
281  int err;
282 
283  inode = logfs_new_meta_inode(sb, ino);
284  if (IS_ERR(inode))
285  return inode;
286 
287  err = logfs_read_inode(inode);
288  if (err) {
289  iput(inode);
290  return ERR_PTR(err);
291  }
292  logfs_inode_setops(inode);
293  return inode;
294 }
295 
296 static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc)
297 {
298  int ret;
299  long flags = WF_LOCK;
300 
301  /* Can only happen if creat() failed. Safe to skip. */
302  if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN)
303  return 0;
304 
305  ret = __logfs_write_inode(inode, NULL, flags);
306  LOGFS_BUG_ON(ret, inode->i_sb);
307  return ret;
308 }
309 
310 /* called with inode->i_lock held */
311 static int logfs_drop_inode(struct inode *inode)
312 {
313  struct logfs_super *super = logfs_super(inode->i_sb);
314  struct logfs_inode *li = logfs_inode(inode);
315 
316  spin_lock(&logfs_inode_lock);
317  list_move(&li->li_freeing_list, &super->s_freeing_list);
318  spin_unlock(&logfs_inode_lock);
319  return generic_drop_inode(inode);
320 }
321 
322 static void logfs_set_ino_generation(struct super_block *sb,
323  struct inode *inode)
324 {
325  struct logfs_super *super = logfs_super(sb);
326  u64 ino;
327 
328  mutex_lock(&super->s_journal_mutex);
329  ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino + 1);
330  super->s_last_ino = ino;
331  super->s_inos_till_wrap--;
332  if (super->s_inos_till_wrap < 0) {
334  super->s_generation++;
336  }
337  inode->i_ino = ino;
338  inode->i_generation = super->s_generation;
339  mutex_unlock(&super->s_journal_mutex);
340 }
341 
342 struct inode *logfs_new_inode(struct inode *dir, umode_t mode)
343 {
344  struct super_block *sb = dir->i_sb;
345  struct inode *inode;
346 
347  inode = new_inode(sb);
348  if (!inode)
349  return ERR_PTR(-ENOMEM);
350 
351  logfs_init_inode(sb, inode);
352 
353  /* inherit parent flags */
354  logfs_inode(inode)->li_flags |=
356 
357  inode->i_mode = mode;
358  logfs_set_ino_generation(sb, inode);
359 
360  inode_init_owner(inode, dir, mode);
361  logfs_inode_setops(inode);
362  insert_inode_hash(inode);
363 
364  return inode;
365 }
366 
367 static void logfs_init_once(void *_li)
368 {
369  struct logfs_inode *li = _li;
370  int i;
371 
372  li->li_flags = 0;
373  li->li_used_bytes = 0;
374  li->li_refcount = 1;
375  for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
376  li->li_data[i] = 0;
378 }
379 
380 static int logfs_sync_fs(struct super_block *sb, int wait)
381 {
383  logfs_write_anchor(sb);
385  return 0;
386 }
387 
388 static void logfs_put_super(struct super_block *sb)
389 {
390  struct logfs_super *super = logfs_super(sb);
391  /* kill the meta-inodes */
392  iput(super->s_segfile_inode);
393  iput(super->s_master_inode);
394  iput(super->s_mapping_inode);
395 }
396 
398  .alloc_inode = logfs_alloc_inode,
399  .destroy_inode = logfs_destroy_inode,
400  .evict_inode = logfs_evict_inode,
401  .drop_inode = logfs_drop_inode,
402  .put_super = logfs_put_super,
403  .write_inode = logfs_write_inode,
404  .statfs = logfs_statfs,
405  .sync_fs = logfs_sync_fs,
406 };
407 
409 {
410  logfs_inode_cache = kmem_cache_create("logfs_inode_cache",
411  sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT,
412  logfs_init_once);
413  if (!logfs_inode_cache)
414  return -ENOMEM;
415  return 0;
416 }
417 
419 {
420  /*
421  * Make sure all delayed rcu free inodes are flushed before we
422  * destroy cache.
423  */
424  rcu_barrier();
425  kmem_cache_destroy(logfs_inode_cache);
426 }