Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pipe.c
Go to the documentation of this file.
1 /*
2  * linux/fs/pipe.c
3  *
4  * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
27 
28 /*
29  * The max size that a non-root user is allowed to grow the pipe. Can
30  * be set by root in /proc/sys/fs/pipe-max-size
31  */
32 unsigned int pipe_max_size = 1048576;
33 
34 /*
35  * Minimum pipe size, as required by POSIX
36  */
37 unsigned int pipe_min_size = PAGE_SIZE;
38 
39 /*
40  * We use a start+len construction, which provides full use of the
41  * allocated memory.
42  * -- Florian Coosmann (FGC)
43  *
44  * Reads with count = 0 should always return 0.
45  * -- Julian Bradfield 1999-06-07.
46  *
47  * FIFOs and Pipes now generate SIGIO for both readers and writers.
48  * -- Jeremy Elson <[email protected]> 2001-08-16
49  *
50  * pipe_read & write cleanup
51  * -- Manfred Spraul <[email protected]> 2002-05-09
52  */
53 
54 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
55 {
56  if (pipe->inode)
57  mutex_lock_nested(&pipe->inode->i_mutex, subclass);
58 }
59 
61 {
62  /*
63  * pipe_lock() nests non-pipe inode locks (for writing to a file)
64  */
65  pipe_lock_nested(pipe, I_MUTEX_PARENT);
66 }
68 
70 {
71  if (pipe->inode)
72  mutex_unlock(&pipe->inode->i_mutex);
73 }
75 
76 void pipe_double_lock(struct pipe_inode_info *pipe1,
77  struct pipe_inode_info *pipe2)
78 {
79  BUG_ON(pipe1 == pipe2);
80 
81  if (pipe1 < pipe2) {
82  pipe_lock_nested(pipe1, I_MUTEX_PARENT);
83  pipe_lock_nested(pipe2, I_MUTEX_CHILD);
84  } else {
85  pipe_lock_nested(pipe2, I_MUTEX_PARENT);
86  pipe_lock_nested(pipe1, I_MUTEX_CHILD);
87  }
88 }
89 
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
92 {
94 
95  /*
96  * Pipes are system-local resources, so sleeping on them
97  * is considered a noninteractive wait:
98  */
100  pipe_unlock(pipe);
101  schedule();
102  finish_wait(&pipe->wait, &wait);
103  pipe_lock(pipe);
104 }
105 
106 static int
107 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
108  int atomic)
109 {
110  unsigned long copy;
111 
112  while (len > 0) {
113  while (!iov->iov_len)
114  iov++;
115  copy = min_t(unsigned long, len, iov->iov_len);
116 
117  if (atomic) {
118  if (__copy_from_user_inatomic(to, iov->iov_base, copy))
119  return -EFAULT;
120  } else {
121  if (copy_from_user(to, iov->iov_base, copy))
122  return -EFAULT;
123  }
124  to += copy;
125  len -= copy;
126  iov->iov_base += copy;
127  iov->iov_len -= copy;
128  }
129  return 0;
130 }
131 
132 static int
133 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
134  int atomic)
135 {
136  unsigned long copy;
137 
138  while (len > 0) {
139  while (!iov->iov_len)
140  iov++;
141  copy = min_t(unsigned long, len, iov->iov_len);
142 
143  if (atomic) {
144  if (__copy_to_user_inatomic(iov->iov_base, from, copy))
145  return -EFAULT;
146  } else {
147  if (copy_to_user(iov->iov_base, from, copy))
148  return -EFAULT;
149  }
150  from += copy;
151  len -= copy;
152  iov->iov_base += copy;
153  iov->iov_len -= copy;
154  }
155  return 0;
156 }
157 
158 /*
159  * Attempt to pre-fault in the user memory, so we can use atomic copies.
160  * Returns the number of bytes not faulted in.
161  */
162 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
163 {
164  while (!iov->iov_len)
165  iov++;
166 
167  while (len > 0) {
168  unsigned long this_len;
169 
170  this_len = min_t(unsigned long, len, iov->iov_len);
171  if (fault_in_pages_writeable(iov->iov_base, this_len))
172  break;
173 
174  len -= this_len;
175  iov++;
176  }
177 
178  return len;
179 }
180 
181 /*
182  * Pre-fault in the user memory, so we can use atomic copies.
183  */
184 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
185 {
186  while (!iov->iov_len)
187  iov++;
188 
189  while (len > 0) {
190  unsigned long this_len;
191 
192  this_len = min_t(unsigned long, len, iov->iov_len);
193  fault_in_pages_readable(iov->iov_base, this_len);
194  len -= this_len;
195  iov++;
196  }
197 }
198 
199 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
200  struct pipe_buffer *buf)
201 {
202  struct page *page = buf->page;
203 
204  /*
205  * If nobody else uses this page, and we don't already have a
206  * temporary page, let's keep track of it as a one-deep
207  * allocation cache. (Otherwise just release our reference to it)
208  */
209  if (page_count(page) == 1 && !pipe->tmp_page)
210  pipe->tmp_page = page;
211  else
212  page_cache_release(page);
213 }
214 
230  struct pipe_buffer *buf, int atomic)
231 {
232  if (atomic) {
233  buf->flags |= PIPE_BUF_FLAG_ATOMIC;
234  return kmap_atomic(buf->page);
235  }
236 
237  return kmap(buf->page);
238 }
240 
251  struct pipe_buffer *buf, void *map_data)
252 {
253  if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
254  buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
255  kunmap_atomic(map_data);
256  } else
257  kunmap(buf->page);
258 }
260 
274  struct pipe_buffer *buf)
275 {
276  struct page *page = buf->page;
277 
278  /*
279  * A reference of one is golden, that means that the owner of this
280  * page is the only one holding a reference to it. lock the page
281  * and return OK.
282  */
283  if (page_count(page) == 1) {
284  lock_page(page);
285  return 0;
286  }
287 
288  return 1;
289 }
291 
302 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
303 {
304  page_cache_get(buf->page);
305 }
307 
318  struct pipe_buffer *buf)
319 {
320  return 0;
321 }
323 
333  struct pipe_buffer *buf)
334 {
335  page_cache_release(buf->page);
336 }
338 
339 static const struct pipe_buf_operations anon_pipe_buf_ops = {
340  .can_merge = 1,
341  .map = generic_pipe_buf_map,
342  .unmap = generic_pipe_buf_unmap,
343  .confirm = generic_pipe_buf_confirm,
344  .release = anon_pipe_buf_release,
345  .steal = generic_pipe_buf_steal,
346  .get = generic_pipe_buf_get,
347 };
348 
349 static const struct pipe_buf_operations packet_pipe_buf_ops = {
350  .can_merge = 0,
351  .map = generic_pipe_buf_map,
352  .unmap = generic_pipe_buf_unmap,
353  .confirm = generic_pipe_buf_confirm,
354  .release = anon_pipe_buf_release,
355  .steal = generic_pipe_buf_steal,
356  .get = generic_pipe_buf_get,
357 };
358 
359 static ssize_t
360 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
361  unsigned long nr_segs, loff_t pos)
362 {
363  struct file *filp = iocb->ki_filp;
364  struct inode *inode = filp->f_path.dentry->d_inode;
365  struct pipe_inode_info *pipe;
366  int do_wakeup;
367  ssize_t ret;
368  struct iovec *iov = (struct iovec *)_iov;
369  size_t total_len;
370 
371  total_len = iov_length(iov, nr_segs);
372  /* Null read succeeds. */
373  if (unlikely(total_len == 0))
374  return 0;
375 
376  do_wakeup = 0;
377  ret = 0;
378  mutex_lock(&inode->i_mutex);
379  pipe = inode->i_pipe;
380  for (;;) {
381  int bufs = pipe->nrbufs;
382  if (bufs) {
383  int curbuf = pipe->curbuf;
384  struct pipe_buffer *buf = pipe->bufs + curbuf;
385  const struct pipe_buf_operations *ops = buf->ops;
386  void *addr;
387  size_t chars = buf->len;
388  int error, atomic;
389 
390  if (chars > total_len)
391  chars = total_len;
392 
393  error = ops->confirm(pipe, buf);
394  if (error) {
395  if (!ret)
396  ret = error;
397  break;
398  }
399 
400  atomic = !iov_fault_in_pages_write(iov, chars);
401 redo:
402  addr = ops->map(pipe, buf, atomic);
403  error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
404  ops->unmap(pipe, buf, addr);
405  if (unlikely(error)) {
406  /*
407  * Just retry with the slow path if we failed.
408  */
409  if (atomic) {
410  atomic = 0;
411  goto redo;
412  }
413  if (!ret)
414  ret = error;
415  break;
416  }
417  ret += chars;
418  buf->offset += chars;
419  buf->len -= chars;
420 
421  /* Was it a packet buffer? Clean up and exit */
422  if (buf->flags & PIPE_BUF_FLAG_PACKET) {
423  total_len = chars;
424  buf->len = 0;
425  }
426 
427  if (!buf->len) {
428  buf->ops = NULL;
429  ops->release(pipe, buf);
430  curbuf = (curbuf + 1) & (pipe->buffers - 1);
431  pipe->curbuf = curbuf;
432  pipe->nrbufs = --bufs;
433  do_wakeup = 1;
434  }
435  total_len -= chars;
436  if (!total_len)
437  break; /* common path: read succeeded */
438  }
439  if (bufs) /* More to do? */
440  continue;
441  if (!pipe->writers)
442  break;
443  if (!pipe->waiting_writers) {
444  /* syscall merging: Usually we must not sleep
445  * if O_NONBLOCK is set, or if we got some data.
446  * But if a writer sleeps in kernel space, then
447  * we can wait for that data without violating POSIX.
448  */
449  if (ret)
450  break;
451  if (filp->f_flags & O_NONBLOCK) {
452  ret = -EAGAIN;
453  break;
454  }
455  }
456  if (signal_pending(current)) {
457  if (!ret)
458  ret = -ERESTARTSYS;
459  break;
460  }
461  if (do_wakeup) {
464  }
465  pipe_wait(pipe);
466  }
467  mutex_unlock(&inode->i_mutex);
468 
469  /* Signal writers asynchronously that there is more room. */
470  if (do_wakeup) {
473  }
474  if (ret > 0)
475  file_accessed(filp);
476  return ret;
477 }
478 
479 static inline int is_packetized(struct file *file)
480 {
481  return (file->f_flags & O_DIRECT) != 0;
482 }
483 
484 static ssize_t
485 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
486  unsigned long nr_segs, loff_t ppos)
487 {
488  struct file *filp = iocb->ki_filp;
489  struct inode *inode = filp->f_path.dentry->d_inode;
490  struct pipe_inode_info *pipe;
491  ssize_t ret;
492  int do_wakeup;
493  struct iovec *iov = (struct iovec *)_iov;
494  size_t total_len;
495  ssize_t chars;
496 
497  total_len = iov_length(iov, nr_segs);
498  /* Null write succeeds. */
499  if (unlikely(total_len == 0))
500  return 0;
501 
502  do_wakeup = 0;
503  ret = 0;
504  mutex_lock(&inode->i_mutex);
505  pipe = inode->i_pipe;
506 
507  if (!pipe->readers) {
508  send_sig(SIGPIPE, current, 0);
509  ret = -EPIPE;
510  goto out;
511  }
512 
513  /* We try to merge small writes */
514  chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
515  if (pipe->nrbufs && chars != 0) {
516  int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
517  (pipe->buffers - 1);
518  struct pipe_buffer *buf = pipe->bufs + lastbuf;
519  const struct pipe_buf_operations *ops = buf->ops;
520  int offset = buf->offset + buf->len;
521 
522  if (ops->can_merge && offset + chars <= PAGE_SIZE) {
523  int error, atomic = 1;
524  void *addr;
525 
526  error = ops->confirm(pipe, buf);
527  if (error)
528  goto out;
529 
530  iov_fault_in_pages_read(iov, chars);
531 redo1:
532  addr = ops->map(pipe, buf, atomic);
533  error = pipe_iov_copy_from_user(offset + addr, iov,
534  chars, atomic);
535  ops->unmap(pipe, buf, addr);
536  ret = error;
537  do_wakeup = 1;
538  if (error) {
539  if (atomic) {
540  atomic = 0;
541  goto redo1;
542  }
543  goto out;
544  }
545  buf->len += chars;
546  total_len -= chars;
547  ret = chars;
548  if (!total_len)
549  goto out;
550  }
551  }
552 
553  for (;;) {
554  int bufs;
555 
556  if (!pipe->readers) {
557  send_sig(SIGPIPE, current, 0);
558  if (!ret)
559  ret = -EPIPE;
560  break;
561  }
562  bufs = pipe->nrbufs;
563  if (bufs < pipe->buffers) {
564  int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
565  struct pipe_buffer *buf = pipe->bufs + newbuf;
566  struct page *page = pipe->tmp_page;
567  char *src;
568  int error, atomic = 1;
569 
570  if (!page) {
571  page = alloc_page(GFP_HIGHUSER);
572  if (unlikely(!page)) {
573  ret = ret ? : -ENOMEM;
574  break;
575  }
576  pipe->tmp_page = page;
577  }
578  /* Always wake up, even if the copy fails. Otherwise
579  * we lock up (O_NONBLOCK-)readers that sleep due to
580  * syscall merging.
581  * FIXME! Is this really true?
582  */
583  do_wakeup = 1;
584  chars = PAGE_SIZE;
585  if (chars > total_len)
586  chars = total_len;
587 
588  iov_fault_in_pages_read(iov, chars);
589 redo2:
590  if (atomic)
591  src = kmap_atomic(page);
592  else
593  src = kmap(page);
594 
595  error = pipe_iov_copy_from_user(src, iov, chars,
596  atomic);
597  if (atomic)
598  kunmap_atomic(src);
599  else
600  kunmap(page);
601 
602  if (unlikely(error)) {
603  if (atomic) {
604  atomic = 0;
605  goto redo2;
606  }
607  if (!ret)
608  ret = error;
609  break;
610  }
611  ret += chars;
612 
613  /* Insert it into the buffer array */
614  buf->page = page;
615  buf->ops = &anon_pipe_buf_ops;
616  buf->offset = 0;
617  buf->len = chars;
618  buf->flags = 0;
619  if (is_packetized(filp)) {
620  buf->ops = &packet_pipe_buf_ops;
622  }
623  pipe->nrbufs = ++bufs;
624  pipe->tmp_page = NULL;
625 
626  total_len -= chars;
627  if (!total_len)
628  break;
629  }
630  if (bufs < pipe->buffers)
631  continue;
632  if (filp->f_flags & O_NONBLOCK) {
633  if (!ret)
634  ret = -EAGAIN;
635  break;
636  }
637  if (signal_pending(current)) {
638  if (!ret)
639  ret = -ERESTARTSYS;
640  break;
641  }
642  if (do_wakeup) {
645  do_wakeup = 0;
646  }
647  pipe->waiting_writers++;
648  pipe_wait(pipe);
649  pipe->waiting_writers--;
650  }
651 out:
652  mutex_unlock(&inode->i_mutex);
653  if (do_wakeup) {
656  }
657  if (ret > 0) {
658  int err = file_update_time(filp);
659  if (err)
660  ret = err;
661  }
662  return ret;
663 }
664 
665 static ssize_t
666 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
667 {
668  return -EBADF;
669 }
670 
671 static ssize_t
672 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
673  loff_t *ppos)
674 {
675  return -EBADF;
676 }
677 
678 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
679 {
680  struct inode *inode = filp->f_path.dentry->d_inode;
681  struct pipe_inode_info *pipe;
682  int count, buf, nrbufs;
683 
684  switch (cmd) {
685  case FIONREAD:
686  mutex_lock(&inode->i_mutex);
687  pipe = inode->i_pipe;
688  count = 0;
689  buf = pipe->curbuf;
690  nrbufs = pipe->nrbufs;
691  while (--nrbufs >= 0) {
692  count += pipe->bufs[buf].len;
693  buf = (buf+1) & (pipe->buffers - 1);
694  }
695  mutex_unlock(&inode->i_mutex);
696 
697  return put_user(count, (int __user *)arg);
698  default:
699  return -ENOIOCTLCMD;
700  }
701 }
702 
703 /* No kernel lock held - fine */
704 static unsigned int
705 pipe_poll(struct file *filp, poll_table *wait)
706 {
707  unsigned int mask;
708  struct inode *inode = filp->f_path.dentry->d_inode;
709  struct pipe_inode_info *pipe = inode->i_pipe;
710  int nrbufs;
711 
712  poll_wait(filp, &pipe->wait, wait);
713 
714  /* Reading only -- no need for acquiring the semaphore. */
715  nrbufs = pipe->nrbufs;
716  mask = 0;
717  if (filp->f_mode & FMODE_READ) {
718  mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
719  if (!pipe->writers && filp->f_version != pipe->w_counter)
720  mask |= POLLHUP;
721  }
722 
723  if (filp->f_mode & FMODE_WRITE) {
724  mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
725  /*
726  * Most Unices do not set POLLERR for FIFOs but on Linux they
727  * behave exactly like pipes for poll().
728  */
729  if (!pipe->readers)
730  mask |= POLLERR;
731  }
732 
733  return mask;
734 }
735 
736 static int
737 pipe_release(struct inode *inode, int decr, int decw)
738 {
739  struct pipe_inode_info *pipe;
740 
741  mutex_lock(&inode->i_mutex);
742  pipe = inode->i_pipe;
743  pipe->readers -= decr;
744  pipe->writers -= decw;
745 
746  if (!pipe->readers && !pipe->writers) {
747  free_pipe_info(inode);
748  } else {
752  }
753  mutex_unlock(&inode->i_mutex);
754 
755  return 0;
756 }
757 
758 static int
759 pipe_read_fasync(int fd, struct file *filp, int on)
760 {
761  struct inode *inode = filp->f_path.dentry->d_inode;
762  int retval;
763 
764  mutex_lock(&inode->i_mutex);
765  retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
766  mutex_unlock(&inode->i_mutex);
767 
768  return retval;
769 }
770 
771 
772 static int
773 pipe_write_fasync(int fd, struct file *filp, int on)
774 {
775  struct inode *inode = filp->f_path.dentry->d_inode;
776  int retval;
777 
778  mutex_lock(&inode->i_mutex);
779  retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
780  mutex_unlock(&inode->i_mutex);
781 
782  return retval;
783 }
784 
785 
786 static int
787 pipe_rdwr_fasync(int fd, struct file *filp, int on)
788 {
789  struct inode *inode = filp->f_path.dentry->d_inode;
790  struct pipe_inode_info *pipe = inode->i_pipe;
791  int retval;
792 
793  mutex_lock(&inode->i_mutex);
794  retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
795  if (retval >= 0) {
796  retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
797  if (retval < 0) /* this can happen only if on == T */
798  fasync_helper(-1, filp, 0, &pipe->fasync_readers);
799  }
800  mutex_unlock(&inode->i_mutex);
801  return retval;
802 }
803 
804 
805 static int
806 pipe_read_release(struct inode *inode, struct file *filp)
807 {
808  return pipe_release(inode, 1, 0);
809 }
810 
811 static int
812 pipe_write_release(struct inode *inode, struct file *filp)
813 {
814  return pipe_release(inode, 0, 1);
815 }
816 
817 static int
818 pipe_rdwr_release(struct inode *inode, struct file *filp)
819 {
820  int decr, decw;
821 
822  decr = (filp->f_mode & FMODE_READ) != 0;
823  decw = (filp->f_mode & FMODE_WRITE) != 0;
824  return pipe_release(inode, decr, decw);
825 }
826 
827 static int
828 pipe_read_open(struct inode *inode, struct file *filp)
829 {
830  int ret = -ENOENT;
831 
832  mutex_lock(&inode->i_mutex);
833 
834  if (inode->i_pipe) {
835  ret = 0;
836  inode->i_pipe->readers++;
837  }
838 
839  mutex_unlock(&inode->i_mutex);
840 
841  return ret;
842 }
843 
844 static int
845 pipe_write_open(struct inode *inode, struct file *filp)
846 {
847  int ret = -ENOENT;
848 
849  mutex_lock(&inode->i_mutex);
850 
851  if (inode->i_pipe) {
852  ret = 0;
853  inode->i_pipe->writers++;
854  }
855 
856  mutex_unlock(&inode->i_mutex);
857 
858  return ret;
859 }
860 
861 static int
862 pipe_rdwr_open(struct inode *inode, struct file *filp)
863 {
864  int ret = -ENOENT;
865 
866  mutex_lock(&inode->i_mutex);
867 
868  if (inode->i_pipe) {
869  ret = 0;
870  if (filp->f_mode & FMODE_READ)
871  inode->i_pipe->readers++;
872  if (filp->f_mode & FMODE_WRITE)
873  inode->i_pipe->writers++;
874  }
875 
876  mutex_unlock(&inode->i_mutex);
877 
878  return ret;
879 }
880 
881 /*
882  * The file_operations structs are not static because they
883  * are also used in linux/fs/fifo.c to do operations on FIFOs.
884  *
885  * Pipes reuse fifos' file_operations structs.
886  */
888  .llseek = no_llseek,
889  .read = do_sync_read,
890  .aio_read = pipe_read,
891  .write = bad_pipe_w,
892  .poll = pipe_poll,
893  .unlocked_ioctl = pipe_ioctl,
894  .open = pipe_read_open,
895  .release = pipe_read_release,
896  .fasync = pipe_read_fasync,
897 };
898 
900  .llseek = no_llseek,
901  .read = bad_pipe_r,
902  .write = do_sync_write,
903  .aio_write = pipe_write,
904  .poll = pipe_poll,
905  .unlocked_ioctl = pipe_ioctl,
906  .open = pipe_write_open,
907  .release = pipe_write_release,
908  .fasync = pipe_write_fasync,
909 };
910 
912  .llseek = no_llseek,
913  .read = do_sync_read,
914  .aio_read = pipe_read,
915  .write = do_sync_write,
916  .aio_write = pipe_write,
917  .poll = pipe_poll,
918  .unlocked_ioctl = pipe_ioctl,
919  .open = pipe_rdwr_open,
920  .release = pipe_rdwr_release,
921  .fasync = pipe_rdwr_fasync,
922 };
923 
924 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
925 {
926  struct pipe_inode_info *pipe;
927 
928  pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
929  if (pipe) {
930  pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
931  if (pipe->bufs) {
932  init_waitqueue_head(&pipe->wait);
933  pipe->r_counter = pipe->w_counter = 1;
934  pipe->inode = inode;
935  pipe->buffers = PIPE_DEF_BUFFERS;
936  return pipe;
937  }
938  kfree(pipe);
939  }
940 
941  return NULL;
942 }
943 
945 {
946  int i;
947 
948  for (i = 0; i < pipe->buffers; i++) {
949  struct pipe_buffer *buf = pipe->bufs + i;
950  if (buf->ops)
951  buf->ops->release(pipe, buf);
952  }
953  if (pipe->tmp_page)
954  __free_page(pipe->tmp_page);
955  kfree(pipe->bufs);
956  kfree(pipe);
957 }
958 
959 void free_pipe_info(struct inode *inode)
960 {
961  __free_pipe_info(inode->i_pipe);
962  inode->i_pipe = NULL;
963 }
964 
965 static struct vfsmount *pipe_mnt __read_mostly;
966 
967 /*
968  * pipefs_dname() is called from d_path().
969  */
970 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
971 {
972  return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
973  dentry->d_inode->i_ino);
974 }
975 
976 static const struct dentry_operations pipefs_dentry_operations = {
977  .d_dname = pipefs_dname,
978 };
979 
980 static struct inode * get_pipe_inode(void)
981 {
982  struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
983  struct pipe_inode_info *pipe;
984 
985  if (!inode)
986  goto fail_inode;
987 
988  inode->i_ino = get_next_ino();
989 
990  pipe = alloc_pipe_info(inode);
991  if (!pipe)
992  goto fail_iput;
993  inode->i_pipe = pipe;
994 
995  pipe->readers = pipe->writers = 1;
996  inode->i_fop = &rdwr_pipefifo_fops;
997 
998  /*
999  * Mark the inode dirty from the very beginning,
1000  * that way it will never be moved to the dirty
1001  * list because "mark_inode_dirty()" will think
1002  * that it already _is_ on the dirty list.
1003  */
1004  inode->i_state = I_DIRTY;
1005  inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1006  inode->i_uid = current_fsuid();
1007  inode->i_gid = current_fsgid();
1008  inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1009 
1010  return inode;
1011 
1012 fail_iput:
1013  iput(inode);
1014 
1015 fail_inode:
1016  return NULL;
1017 }
1018 
1019 int create_pipe_files(struct file **res, int flags)
1020 {
1021  int err;
1022  struct inode *inode = get_pipe_inode();
1023  struct file *f;
1024  struct path path;
1025  static struct qstr name = { .name = "" };
1026 
1027  if (!inode)
1028  return -ENFILE;
1029 
1030  err = -ENOMEM;
1031  path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1032  if (!path.dentry)
1033  goto err_inode;
1034  path.mnt = mntget(pipe_mnt);
1035 
1036  d_instantiate(path.dentry, inode);
1037 
1038  err = -ENFILE;
1039  f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1040  if (!f)
1041  goto err_dentry;
1042 
1043  f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
1044 
1045  res[0] = alloc_file(&path, FMODE_READ, &read_pipefifo_fops);
1046  if (!res[0])
1047  goto err_file;
1048 
1049  path_get(&path);
1050  res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1051  res[1] = f;
1052  return 0;
1053 
1054 err_file:
1055  put_filp(f);
1056 err_dentry:
1057  free_pipe_info(inode);
1058  path_put(&path);
1059  return err;
1060 
1061 err_inode:
1062  free_pipe_info(inode);
1063  iput(inode);
1064  return err;
1065 }
1066 
1067 static int __do_pipe_flags(int *fd, struct file **files, int flags)
1068 {
1069  int error;
1070  int fdw, fdr;
1071 
1072  if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
1073  return -EINVAL;
1074 
1075  error = create_pipe_files(files, flags);
1076  if (error)
1077  return error;
1078 
1079  error = get_unused_fd_flags(flags);
1080  if (error < 0)
1081  goto err_read_pipe;
1082  fdr = error;
1083 
1084  error = get_unused_fd_flags(flags);
1085  if (error < 0)
1086  goto err_fdr;
1087  fdw = error;
1088 
1089  audit_fd_pair(fdr, fdw);
1090  fd[0] = fdr;
1091  fd[1] = fdw;
1092  return 0;
1093 
1094  err_fdr:
1095  put_unused_fd(fdr);
1096  err_read_pipe:
1097  fput(files[0]);
1098  fput(files[1]);
1099  return error;
1100 }
1101 
1102 int do_pipe_flags(int *fd, int flags)
1103 {
1104  struct file *files[2];
1105  int error = __do_pipe_flags(fd, files, flags);
1106  if (!error) {
1107  fd_install(fd[0], files[0]);
1108  fd_install(fd[1], files[1]);
1109  }
1110  return error;
1111 }
1112 
1113 /*
1114  * sys_pipe() is the normal C calling standard for creating
1115  * a pipe. It's not the way Unix traditionally does this, though.
1116  */
1117 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1118 {
1119  struct file *files[2];
1120  int fd[2];
1121  int error;
1122 
1123  error = __do_pipe_flags(fd, files, flags);
1124  if (!error) {
1125  if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1126  fput(files[0]);
1127  fput(files[1]);
1128  put_unused_fd(fd[0]);
1129  put_unused_fd(fd[1]);
1130  error = -EFAULT;
1131  } else {
1132  fd_install(fd[0], files[0]);
1133  fd_install(fd[1], files[1]);
1134  }
1135  }
1136  return error;
1137 }
1138 
1139 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1140 {
1141  return sys_pipe2(fildes, 0);
1142 }
1143 
1144 /*
1145  * Allocate a new array of pipe buffers and copy the info over. Returns the
1146  * pipe size if successful, or return -ERROR on error.
1147  */
1148 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1149 {
1150  struct pipe_buffer *bufs;
1151 
1152  /*
1153  * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1154  * expect a lot of shrink+grow operations, just free and allocate
1155  * again like we would do for growing. If the pipe currently
1156  * contains more buffers than arg, then return busy.
1157  */
1158  if (nr_pages < pipe->nrbufs)
1159  return -EBUSY;
1160 
1161  bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1162  if (unlikely(!bufs))
1163  return -ENOMEM;
1164 
1165  /*
1166  * The pipe array wraps around, so just start the new one at zero
1167  * and adjust the indexes.
1168  */
1169  if (pipe->nrbufs) {
1170  unsigned int tail;
1171  unsigned int head;
1172 
1173  tail = pipe->curbuf + pipe->nrbufs;
1174  if (tail < pipe->buffers)
1175  tail = 0;
1176  else
1177  tail &= (pipe->buffers - 1);
1178 
1179  head = pipe->nrbufs - tail;
1180  if (head)
1181  memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1182  if (tail)
1183  memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1184  }
1185 
1186  pipe->curbuf = 0;
1187  kfree(pipe->bufs);
1188  pipe->bufs = bufs;
1189  pipe->buffers = nr_pages;
1190  return nr_pages * PAGE_SIZE;
1191 }
1192 
1193 /*
1194  * Currently we rely on the pipe array holding a power-of-2 number
1195  * of pages.
1196  */
1197 static inline unsigned int round_pipe_size(unsigned int size)
1198 {
1199  unsigned long nr_pages;
1200 
1201  nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1202  return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1203 }
1204 
1205 /*
1206  * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1207  * will return an error.
1208  */
1209 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1210  size_t *lenp, loff_t *ppos)
1211 {
1212  int ret;
1213 
1214  ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1215  if (ret < 0 || !write)
1216  return ret;
1217 
1218  pipe_max_size = round_pipe_size(pipe_max_size);
1219  return ret;
1220 }
1221 
1222 /*
1223  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1224  * location, so checking ->i_pipe is not enough to verify that this is a
1225  * pipe.
1226  */
1227 struct pipe_inode_info *get_pipe_info(struct file *file)
1228 {
1229  struct inode *i = file->f_path.dentry->d_inode;
1230 
1231  return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1232 }
1233 
1234 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1235 {
1236  struct pipe_inode_info *pipe;
1237  long ret;
1238 
1239  pipe = get_pipe_info(file);
1240  if (!pipe)
1241  return -EBADF;
1242 
1243  mutex_lock(&pipe->inode->i_mutex);
1244 
1245  switch (cmd) {
1246  case F_SETPIPE_SZ: {
1247  unsigned int size, nr_pages;
1248 
1249  size = round_pipe_size(arg);
1250  nr_pages = size >> PAGE_SHIFT;
1251 
1252  ret = -EINVAL;
1253  if (!nr_pages)
1254  goto out;
1255 
1256  if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1257  ret = -EPERM;
1258  goto out;
1259  }
1260  ret = pipe_set_size(pipe, nr_pages);
1261  break;
1262  }
1263  case F_GETPIPE_SZ:
1264  ret = pipe->buffers * PAGE_SIZE;
1265  break;
1266  default:
1267  ret = -EINVAL;
1268  break;
1269  }
1270 
1271 out:
1272  mutex_unlock(&pipe->inode->i_mutex);
1273  return ret;
1274 }
1275 
1276 static const struct super_operations pipefs_ops = {
1277  .destroy_inode = free_inode_nonrcu,
1278  .statfs = simple_statfs,
1279 };
1280 
1281 /*
1282  * pipefs should _never_ be mounted by userland - too much of security hassle,
1283  * no real gain from having the whole whorehouse mounted. So we don't need
1284  * any operations on the root directory. However, we need a non-trivial
1285  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1286  */
1287 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1288  int flags, const char *dev_name, void *data)
1289 {
1290  return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1291  &pipefs_dentry_operations, PIPEFS_MAGIC);
1292 }
1293 
1294 static struct file_system_type pipe_fs_type = {
1295  .name = "pipefs",
1296  .mount = pipefs_mount,
1297  .kill_sb = kill_anon_super,
1298 };
1299 
1300 static int __init init_pipe_fs(void)
1301 {
1302  int err = register_filesystem(&pipe_fs_type);
1303 
1304  if (!err) {
1305  pipe_mnt = kern_mount(&pipe_fs_type);
1306  if (IS_ERR(pipe_mnt)) {
1307  err = PTR_ERR(pipe_mnt);
1308  unregister_filesystem(&pipe_fs_type);
1309  }
1310  }
1311  return err;
1312 }
1313 
1314 fs_initcall(init_pipe_fs);