Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
io.c
Go to the documentation of this file.
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  * Adrian Hunter
22  * Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35  * write size (@c->max_write_size). The latter is the maximum amount of bytes
36  * the underlying flash is able to program at a time, and writing in
37  * @c->max_write_size units should presumably be faster. Obviously,
38  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39  * @c->max_write_size bytes in size for maximum performance. However, when a
40  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41  * boundary) which contains data is written, not the whole write-buffer,
42  * because this is more space-efficient.
43  *
44  * This optimization adds few complications to the code. Indeed, on the one
45  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46  * also means aligning writes at the @c->max_write_size bytes offsets. On the
47  * other hand, we do not want to waste space when synchronizing the write
48  * buffer, so during synchronization we writes in smaller chunks. And this makes
49  * the next write offset to be not aligned to @c->max_write_size bytes. So the
50  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51  * to @c->max_write_size bytes again. We do this by temporarily shrinking
52  * write-buffer size (@wbuf->size).
53  *
54  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55  * mutexes defined inside these objects. Since sometimes upper-level code
56  * has to lock the write-buffer (e.g. journal space reservation code), many
57  * functions related to write-buffers have "nolock" suffix which means that the
58  * caller has to lock the write-buffer before calling this function.
59  *
60  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61  * aligned, UBIFS starts the next node from the aligned address, and the padded
62  * bytes may contain any rubbish. In other words, UBIFS does not put padding
63  * bytes in those small gaps. Common headers of nodes store real node lengths,
64  * not aligned lengths. Indexing nodes also store real lengths in branches.
65  *
66  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67  * uses padding nodes or padding bytes, if the padding node does not fit.
68  *
69  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70  * they are read from the flash media.
71  */
72 
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
75 #include "ubifs.h"
76 
82 void ubifs_ro_mode(struct ubifs_info *c, int err)
83 {
84  if (!c->ro_error) {
85  c->ro_error = 1;
86  c->no_chk_data_crc = 0;
87  c->vfs_sb->s_flags |= MS_RDONLY;
88  ubifs_warn("switched to read-only mode, error %d", err);
89  dump_stack();
90  }
91 }
92 
93 /*
94  * Below are simple wrappers over UBI I/O functions which include some
95  * additional checks and UBIFS debugging stuff. See corresponding UBI function
96  * for more information.
97  */
98 
99 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100  int len, int even_ebadmsg)
101 {
102  int err;
103 
104  err = ubi_read(c->ubi, lnum, buf, offs, len);
105  /*
106  * In case of %-EBADMSG print the error message only if the
107  * @even_ebadmsg is true.
108  */
109  if (err && (err != -EBADMSG || even_ebadmsg)) {
110  ubifs_err("reading %d bytes from LEB %d:%d failed, error %d",
111  len, lnum, offs, err);
112  dump_stack();
113  }
114  return err;
115 }
116 
117 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118  int len)
119 {
120  int err;
121 
122  ubifs_assert(!c->ro_media && !c->ro_mount);
123  if (c->ro_error)
124  return -EROFS;
125  if (!dbg_is_tst_rcvry(c))
126  err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
127  else
128  err = dbg_leb_write(c, lnum, buf, offs, len);
129  if (err) {
130  ubifs_err("writing %d bytes to LEB %d:%d failed, error %d",
131  len, lnum, offs, err);
132  ubifs_ro_mode(c, err);
133  dump_stack();
134  }
135  return err;
136 }
137 
138 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
139 {
140  int err;
141 
142  ubifs_assert(!c->ro_media && !c->ro_mount);
143  if (c->ro_error)
144  return -EROFS;
145  if (!dbg_is_tst_rcvry(c))
146  err = ubi_leb_change(c->ubi, lnum, buf, len);
147  else
148  err = dbg_leb_change(c, lnum, buf, len);
149  if (err) {
150  ubifs_err("changing %d bytes in LEB %d failed, error %d",
151  len, lnum, err);
152  ubifs_ro_mode(c, err);
153  dump_stack();
154  }
155  return err;
156 }
157 
158 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
159 {
160  int err;
161 
162  ubifs_assert(!c->ro_media && !c->ro_mount);
163  if (c->ro_error)
164  return -EROFS;
165  if (!dbg_is_tst_rcvry(c))
166  err = ubi_leb_unmap(c->ubi, lnum);
167  else
168  err = dbg_leb_unmap(c, lnum);
169  if (err) {
170  ubifs_err("unmap LEB %d failed, error %d", lnum, err);
171  ubifs_ro_mode(c, err);
172  dump_stack();
173  }
174  return err;
175 }
176 
177 int ubifs_leb_map(struct ubifs_info *c, int lnum)
178 {
179  int err;
180 
181  ubifs_assert(!c->ro_media && !c->ro_mount);
182  if (c->ro_error)
183  return -EROFS;
184  if (!dbg_is_tst_rcvry(c))
185  err = ubi_leb_map(c->ubi, lnum);
186  else
187  err = dbg_leb_map(c, lnum);
188  if (err) {
189  ubifs_err("mapping LEB %d failed, error %d", lnum, err);
190  ubifs_ro_mode(c, err);
191  dump_stack();
192  }
193  return err;
194 }
195 
196 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
197 {
198  int err;
199 
200  err = ubi_is_mapped(c->ubi, lnum);
201  if (err < 0) {
202  ubifs_err("ubi_is_mapped failed for LEB %d, error %d",
203  lnum, err);
204  dump_stack();
205  }
206  return err;
207 }
208 
237 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
238  int offs, int quiet, int must_chk_crc)
239 {
240  int err = -EINVAL, type, node_len;
242  const struct ubifs_ch *ch = buf;
243 
244  ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
245  ubifs_assert(!(offs & 7) && offs < c->leb_size);
246 
247  magic = le32_to_cpu(ch->magic);
248  if (magic != UBIFS_NODE_MAGIC) {
249  if (!quiet)
250  ubifs_err("bad magic %#08x, expected %#08x",
251  magic, UBIFS_NODE_MAGIC);
252  err = -EUCLEAN;
253  goto out;
254  }
255 
256  type = ch->node_type;
258  if (!quiet)
259  ubifs_err("bad node type %d", type);
260  goto out;
261  }
262 
263  node_len = le32_to_cpu(ch->len);
264  if (node_len + offs > c->leb_size)
265  goto out_len;
266 
267  if (c->ranges[type].max_len == 0) {
268  if (node_len != c->ranges[type].len)
269  goto out_len;
270  } else if (node_len < c->ranges[type].min_len ||
271  node_len > c->ranges[type].max_len)
272  goto out_len;
273 
274  if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
275  !c->remounting_rw && c->no_chk_data_crc)
276  return 0;
277 
278  crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
279  node_crc = le32_to_cpu(ch->crc);
280  if (crc != node_crc) {
281  if (!quiet)
282  ubifs_err("bad CRC: calculated %#08x, read %#08x",
283  crc, node_crc);
284  err = -EUCLEAN;
285  goto out;
286  }
287 
288  return 0;
289 
290 out_len:
291  if (!quiet)
292  ubifs_err("bad node length %d", node_len);
293 out:
294  if (!quiet) {
295  ubifs_err("bad node at LEB %d:%d", lnum, offs);
296  ubifs_dump_node(c, buf);
297  dump_stack();
298  }
299  return err;
300 }
301 
318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
319 {
320  uint32_t crc;
321 
322  ubifs_assert(pad >= 0 && !(pad & 7));
323 
324  if (pad >= UBIFS_PAD_NODE_SZ) {
325  struct ubifs_ch *ch = buf;
326  struct ubifs_pad_node *pad_node = buf;
327 
331  ch->padding[0] = ch->padding[1] = 0;
332  ch->sqnum = 0;
334  pad -= UBIFS_PAD_NODE_SZ;
335  pad_node->pad_len = cpu_to_le32(pad);
336  crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
337  ch->crc = cpu_to_le32(crc);
338  memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
339  } else if (pad > 0)
340  /* Too little space, padding node won't fit */
341  memset(buf, UBIFS_PADDING_BYTE, pad);
342 }
343 
348 static unsigned long long next_sqnum(struct ubifs_info *c)
349 {
350  unsigned long long sqnum;
351 
352  spin_lock(&c->cnt_lock);
353  sqnum = ++c->max_sqnum;
354  spin_unlock(&c->cnt_lock);
355 
356  if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
357  if (sqnum >= SQNUM_WATERMARK) {
358  ubifs_err("sequence number overflow %llu, end of life",
359  sqnum);
360  ubifs_ro_mode(c, -EINVAL);
361  }
362  ubifs_warn("running out of sequence numbers, end of life soon");
363  }
364 
365  return sqnum;
366 }
367 
379 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
380 {
381  uint32_t crc;
382  struct ubifs_ch *ch = node;
383  unsigned long long sqnum = next_sqnum(c);
384 
385  ubifs_assert(len >= UBIFS_CH_SZ);
386 
388  ch->len = cpu_to_le32(len);
390  ch->sqnum = cpu_to_le64(sqnum);
391  ch->padding[0] = ch->padding[1] = 0;
392  crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
393  ch->crc = cpu_to_le32(crc);
394 
395  if (pad) {
396  len = ALIGN(len, 8);
397  pad = ALIGN(len, c->min_io_size) - len;
398  ubifs_pad(c, node + len, pad);
399  }
400 }
401 
412 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
413 {
414  uint32_t crc;
415  struct ubifs_ch *ch = node;
416  unsigned long long sqnum = next_sqnum(c);
417 
418  ubifs_assert(len >= UBIFS_CH_SZ);
419 
421  ch->len = cpu_to_le32(len);
422  if (last)
424  else
426  ch->sqnum = cpu_to_le64(sqnum);
427  ch->padding[0] = ch->padding[1] = 0;
428  crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
429  ch->crc = cpu_to_le32(crc);
430 }
431 
438 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
439 {
440  struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
441 
442  dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
443  wbuf->need_sync = 1;
444  wbuf->c->need_wbuf_sync = 1;
445  ubifs_wake_up_bgt(wbuf->c);
446  return HRTIMER_NORESTART;
447 }
448 
453 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
454 {
455  ubifs_assert(!hrtimer_active(&wbuf->timer));
456 
457  if (wbuf->no_timer)
458  return;
459  dbg_io("set timer for jhead %s, %llu-%llu millisecs",
460  dbg_jhead(wbuf->jhead),
461  div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
462  div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
463  USEC_PER_SEC));
464  hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
466 }
467 
472 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
473 {
474  if (wbuf->no_timer)
475  return;
476  wbuf->need_sync = 0;
477  hrtimer_cancel(&wbuf->timer);
478 }
479 
494 {
495  struct ubifs_info *c = wbuf->c;
496  int err, dirt, sync_len;
497 
498  cancel_wbuf_timer_nolock(wbuf);
499  if (!wbuf->used || wbuf->lnum == -1)
500  /* Write-buffer is empty or not seeked */
501  return 0;
502 
503  dbg_io("LEB %d:%d, %d bytes, jhead %s",
504  wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
505  ubifs_assert(!(wbuf->avail & 7));
506  ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
507  ubifs_assert(wbuf->size >= c->min_io_size);
508  ubifs_assert(wbuf->size <= c->max_write_size);
509  ubifs_assert(wbuf->size % c->min_io_size == 0);
510  ubifs_assert(!c->ro_media && !c->ro_mount);
511  if (c->leb_size - wbuf->offs >= c->max_write_size)
512  ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
513 
514  if (c->ro_error)
515  return -EROFS;
516 
517  /*
518  * Do not write whole write buffer but write only the minimum necessary
519  * amount of min. I/O units.
520  */
521  sync_len = ALIGN(wbuf->used, c->min_io_size);
522  dirt = sync_len - wbuf->used;
523  if (dirt)
524  ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
525  err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
526  if (err)
527  return err;
528 
529  spin_lock(&wbuf->lock);
530  wbuf->offs += sync_len;
531  /*
532  * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
533  * But our goal is to optimize writes and make sure we write in
534  * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
535  * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
536  * sure that @wbuf->offs + @wbuf->size is aligned to
537  * @c->max_write_size. This way we make sure that after next
538  * write-buffer flush we are again at the optimal offset (aligned to
539  * @c->max_write_size).
540  */
541  if (c->leb_size - wbuf->offs < c->max_write_size)
542  wbuf->size = c->leb_size - wbuf->offs;
543  else if (wbuf->offs & (c->max_write_size - 1))
544  wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
545  else
546  wbuf->size = c->max_write_size;
547  wbuf->avail = wbuf->size;
548  wbuf->used = 0;
549  wbuf->next_ino = 0;
550  spin_unlock(&wbuf->lock);
551 
552  if (wbuf->sync_callback)
553  err = wbuf->sync_callback(c, wbuf->lnum,
554  c->leb_size - wbuf->offs, dirt);
555  return err;
556 }
557 
568 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
569 {
570  const struct ubifs_info *c = wbuf->c;
571 
572  dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
573  ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
574  ubifs_assert(offs >= 0 && offs <= c->leb_size);
575  ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
576  ubifs_assert(lnum != wbuf->lnum);
577  ubifs_assert(wbuf->used == 0);
578 
579  spin_lock(&wbuf->lock);
580  wbuf->lnum = lnum;
581  wbuf->offs = offs;
582  if (c->leb_size - wbuf->offs < c->max_write_size)
583  wbuf->size = c->leb_size - wbuf->offs;
584  else if (wbuf->offs & (c->max_write_size - 1))
585  wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
586  else
587  wbuf->size = c->max_write_size;
588  wbuf->avail = wbuf->size;
589  wbuf->used = 0;
590  spin_unlock(&wbuf->lock);
591 
592  return 0;
593 }
594 
604 {
605  int err, i;
606 
607  ubifs_assert(!c->ro_media && !c->ro_mount);
608  if (!c->need_wbuf_sync)
609  return 0;
610  c->need_wbuf_sync = 0;
611 
612  if (c->ro_error) {
613  err = -EROFS;
614  goto out_timers;
615  }
616 
617  dbg_io("synchronize");
618  for (i = 0; i < c->jhead_cnt; i++) {
619  struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
620 
621  cond_resched();
622 
623  /*
624  * If the mutex is locked then wbuf is being changed, so
625  * synchronization is not necessary.
626  */
627  if (mutex_is_locked(&wbuf->io_mutex))
628  continue;
629 
630  mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
631  if (!wbuf->need_sync) {
632  mutex_unlock(&wbuf->io_mutex);
633  continue;
634  }
635 
636  err = ubifs_wbuf_sync_nolock(wbuf);
637  mutex_unlock(&wbuf->io_mutex);
638  if (err) {
639  ubifs_err("cannot sync write-buffer, error %d", err);
640  ubifs_ro_mode(c, err);
641  goto out_timers;
642  }
643  }
644 
645  return 0;
646 
647 out_timers:
648  /* Cancel all timers to prevent repeated errors */
649  for (i = 0; i < c->jhead_cnt; i++) {
650  struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
651 
652  mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
653  cancel_wbuf_timer_nolock(wbuf);
654  mutex_unlock(&wbuf->io_mutex);
655  }
656  return err;
657 }
658 
675 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
676 {
677  struct ubifs_info *c = wbuf->c;
678  int err, written, n, aligned_len = ALIGN(len, 8);
679 
680  dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
681  dbg_ntype(((struct ubifs_ch *)buf)->node_type),
682  dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
683  ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
684  ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
685  ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
686  ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
687  ubifs_assert(wbuf->size >= c->min_io_size);
688  ubifs_assert(wbuf->size <= c->max_write_size);
689  ubifs_assert(wbuf->size % c->min_io_size == 0);
690  ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
691  ubifs_assert(!c->ro_media && !c->ro_mount);
693  if (c->leb_size - wbuf->offs >= c->max_write_size)
694  ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
695 
696  if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
697  err = -ENOSPC;
698  goto out;
699  }
700 
701  cancel_wbuf_timer_nolock(wbuf);
702 
703  if (c->ro_error)
704  return -EROFS;
705 
706  if (aligned_len <= wbuf->avail) {
707  /*
708  * The node is not very large and fits entirely within
709  * write-buffer.
710  */
711  memcpy(wbuf->buf + wbuf->used, buf, len);
712 
713  if (aligned_len == wbuf->avail) {
714  dbg_io("flush jhead %s wbuf to LEB %d:%d",
715  dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
716  err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
717  wbuf->offs, wbuf->size);
718  if (err)
719  goto out;
720 
721  spin_lock(&wbuf->lock);
722  wbuf->offs += wbuf->size;
723  if (c->leb_size - wbuf->offs >= c->max_write_size)
724  wbuf->size = c->max_write_size;
725  else
726  wbuf->size = c->leb_size - wbuf->offs;
727  wbuf->avail = wbuf->size;
728  wbuf->used = 0;
729  wbuf->next_ino = 0;
730  spin_unlock(&wbuf->lock);
731  } else {
732  spin_lock(&wbuf->lock);
733  wbuf->avail -= aligned_len;
734  wbuf->used += aligned_len;
735  spin_unlock(&wbuf->lock);
736  }
737 
738  goto exit;
739  }
740 
741  written = 0;
742 
743  if (wbuf->used) {
744  /*
745  * The node is large enough and does not fit entirely within
746  * current available space. We have to fill and flush
747  * write-buffer and switch to the next max. write unit.
748  */
749  dbg_io("flush jhead %s wbuf to LEB %d:%d",
750  dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
751  memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
752  err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
753  wbuf->size);
754  if (err)
755  goto out;
756 
757  wbuf->offs += wbuf->size;
758  len -= wbuf->avail;
759  aligned_len -= wbuf->avail;
760  written += wbuf->avail;
761  } else if (wbuf->offs & (c->max_write_size - 1)) {
762  /*
763  * The write-buffer offset is not aligned to
764  * @c->max_write_size and @wbuf->size is less than
765  * @c->max_write_size. Write @wbuf->size bytes to make sure the
766  * following writes are done in optimal @c->max_write_size
767  * chunks.
768  */
769  dbg_io("write %d bytes to LEB %d:%d",
770  wbuf->size, wbuf->lnum, wbuf->offs);
771  err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
772  wbuf->size);
773  if (err)
774  goto out;
775 
776  wbuf->offs += wbuf->size;
777  len -= wbuf->size;
778  aligned_len -= wbuf->size;
779  written += wbuf->size;
780  }
781 
782  /*
783  * The remaining data may take more whole max. write units, so write the
784  * remains multiple to max. write unit size directly to the flash media.
785  * We align node length to 8-byte boundary because we anyway flash wbuf
786  * if the remaining space is less than 8 bytes.
787  */
788  n = aligned_len >> c->max_write_shift;
789  if (n) {
790  n <<= c->max_write_shift;
791  dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
792  wbuf->offs);
793  err = ubifs_leb_write(c, wbuf->lnum, buf + written,
794  wbuf->offs, n);
795  if (err)
796  goto out;
797  wbuf->offs += n;
798  aligned_len -= n;
799  len -= n;
800  written += n;
801  }
802 
803  spin_lock(&wbuf->lock);
804  if (aligned_len)
805  /*
806  * And now we have what's left and what does not take whole
807  * max. write unit, so write it to the write-buffer and we are
808  * done.
809  */
810  memcpy(wbuf->buf, buf + written, len);
811 
812  if (c->leb_size - wbuf->offs >= c->max_write_size)
813  wbuf->size = c->max_write_size;
814  else
815  wbuf->size = c->leb_size - wbuf->offs;
816  wbuf->avail = wbuf->size - aligned_len;
817  wbuf->used = aligned_len;
818  wbuf->next_ino = 0;
819  spin_unlock(&wbuf->lock);
820 
821 exit:
822  if (wbuf->sync_callback) {
823  int free = c->leb_size - wbuf->offs - wbuf->used;
824 
825  err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
826  if (err)
827  goto out;
828  }
829 
830  if (wbuf->used)
831  new_wbuf_timer_nolock(wbuf);
832 
833  return 0;
834 
835 out:
836  ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
837  len, wbuf->lnum, wbuf->offs, err);
838  ubifs_dump_node(c, buf);
839  dump_stack();
840  ubifs_dump_leb(c, wbuf->lnum);
841  return err;
842 }
843 
858 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
859  int offs)
860 {
861  int err, buf_len = ALIGN(len, c->min_io_size);
862 
863  dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
864  lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
865  buf_len);
866  ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
867  ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
868  ubifs_assert(!c->ro_media && !c->ro_mount);
870 
871  if (c->ro_error)
872  return -EROFS;
873 
874  ubifs_prepare_node(c, buf, len, 1);
875  err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
876  if (err)
877  ubifs_dump_node(c, buf);
878 
879  return err;
880 }
881 
897 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
898  int lnum, int offs)
899 {
900  const struct ubifs_info *c = wbuf->c;
901  int err, rlen, overlap;
902  struct ubifs_ch *ch = buf;
903 
904  dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
905  dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
906  ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
907  ubifs_assert(!(offs & 7) && offs < c->leb_size);
908  ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
909 
910  spin_lock(&wbuf->lock);
911  overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
912  if (!overlap) {
913  /* We may safely unlock the write-buffer and read the data */
914  spin_unlock(&wbuf->lock);
915  return ubifs_read_node(c, buf, type, len, lnum, offs);
916  }
917 
918  /* Don't read under wbuf */
919  rlen = wbuf->offs - offs;
920  if (rlen < 0)
921  rlen = 0;
922 
923  /* Copy the rest from the write-buffer */
924  memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
925  spin_unlock(&wbuf->lock);
926 
927  if (rlen > 0) {
928  /* Read everything that goes before write-buffer */
929  err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
930  if (err && err != -EBADMSG)
931  return err;
932  }
933 
934  if (type != ch->node_type) {
935  ubifs_err("bad node type (%d but expected %d)",
936  ch->node_type, type);
937  goto out;
938  }
939 
940  err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
941  if (err) {
942  ubifs_err("expected node type %d", type);
943  return err;
944  }
945 
946  rlen = le32_to_cpu(ch->len);
947  if (rlen != len) {
948  ubifs_err("bad node length %d, expected %d", rlen, len);
949  goto out;
950  }
951 
952  return 0;
953 
954 out:
955  ubifs_err("bad node at LEB %d:%d", lnum, offs);
956  ubifs_dump_node(c, buf);
957  dump_stack();
958  return -EINVAL;
959 }
960 
974 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
975  int lnum, int offs)
976 {
977  int err, l;
978  struct ubifs_ch *ch = buf;
979 
980  dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
981  ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
982  ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
983  ubifs_assert(!(offs & 7) && offs < c->leb_size);
984  ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
985 
986  err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
987  if (err && err != -EBADMSG)
988  return err;
989 
990  if (type != ch->node_type) {
991  ubifs_err("bad node type (%d but expected %d)",
992  ch->node_type, type);
993  goto out;
994  }
995 
996  err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
997  if (err) {
998  ubifs_err("expected node type %d", type);
999  return err;
1000  }
1001 
1002  l = le32_to_cpu(ch->len);
1003  if (l != len) {
1004  ubifs_err("bad node length %d, expected %d", l, len);
1005  goto out;
1006  }
1007 
1008  return 0;
1009 
1010 out:
1011  ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
1012  ubi_is_mapped(c->ubi, lnum));
1013  ubifs_dump_node(c, buf);
1014  dump_stack();
1015  return -EINVAL;
1016 }
1017 
1026 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1027 {
1028  size_t size;
1029 
1030  wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1031  if (!wbuf->buf)
1032  return -ENOMEM;
1033 
1034  size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1035  wbuf->inodes = kmalloc(size, GFP_KERNEL);
1036  if (!wbuf->inodes) {
1037  kfree(wbuf->buf);
1038  wbuf->buf = NULL;
1039  return -ENOMEM;
1040  }
1041 
1042  wbuf->used = 0;
1043  wbuf->lnum = wbuf->offs = -1;
1044  /*
1045  * If the LEB starts at the max. write size aligned address, then
1046  * write-buffer size has to be set to @c->max_write_size. Otherwise,
1047  * set it to something smaller so that it ends at the closest max.
1048  * write size boundary.
1049  */
1050  size = c->max_write_size - (c->leb_start % c->max_write_size);
1051  wbuf->avail = wbuf->size = size;
1052  wbuf->sync_callback = NULL;
1053  mutex_init(&wbuf->io_mutex);
1054  spin_lock_init(&wbuf->lock);
1055  wbuf->c = c;
1056  wbuf->next_ino = 0;
1057 
1059  wbuf->timer.function = wbuf_timer_callback_nolock;
1060  wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1062  wbuf->delta *= 1000000000ULL;
1063  ubifs_assert(wbuf->delta <= ULONG_MAX);
1064  return 0;
1065 }
1066 
1075 {
1076  if (!wbuf->buf)
1077  /* NOR flash or something similar */
1078  return;
1079 
1080  spin_lock(&wbuf->lock);
1081  if (wbuf->used)
1082  wbuf->inodes[wbuf->next_ino++] = inum;
1083  spin_unlock(&wbuf->lock);
1084 }
1085 
1094 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1095 {
1096  int i, ret = 0;
1097 
1098  spin_lock(&wbuf->lock);
1099  for (i = 0; i < wbuf->next_ino; i++)
1100  if (inum == wbuf->inodes[i]) {
1101  ret = 1;
1102  break;
1103  }
1104  spin_unlock(&wbuf->lock);
1105 
1106  return ret;
1107 }
1108 
1119 {
1120  int i, err = 0;
1121 
1122  for (i = 0; i < c->jhead_cnt; i++) {
1123  struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1124 
1125  if (i == GCHD)
1126  /*
1127  * GC head is special, do not look at it. Even if the
1128  * head contains something related to this inode, it is
1129  * a _copy_ of corresponding on-flash node which sits
1130  * somewhere else.
1131  */
1132  continue;
1133 
1134  if (!wbuf_has_ino(wbuf, inode->i_ino))
1135  continue;
1136 
1137  mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1138  if (wbuf_has_ino(wbuf, inode->i_ino))
1139  err = ubifs_wbuf_sync_nolock(wbuf);
1140  mutex_unlock(&wbuf->io_mutex);
1141 
1142  if (err) {
1143  ubifs_ro_mode(c, err);
1144  return err;
1145  }
1146  }
1147  return 0;
1148 }