Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ieee754dp.c
Go to the documentation of this file.
1 /* IEEE754 floating point arithmetic
2  * double precision: common utilities
3  */
4 /*
5  * MIPS floating point support
6  * Copyright (C) 1994-2000 Algorithmics Ltd.
7  *
8  * ########################################################################
9  *
10  * This program is free software; you can distribute it and/or modify it
11  * under the terms of the GNU General Public License (Version 2) as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17  * for more details.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write to the Free Software Foundation, Inc.,
21  * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * ########################################################################
24  */
25 
26 
27 #include "ieee754dp.h"
28 
29 int ieee754dp_class(ieee754dp x)
30 {
31  COMPXDP;
32  EXPLODEXDP;
33  return xc;
34 }
35 
36 int ieee754dp_isnan(ieee754dp x)
37 {
39 }
40 
41 int ieee754dp_issnan(ieee754dp x)
42 {
44  return ((DPMANT(x) & DP_MBIT(DP_MBITS-1)) == DP_MBIT(DP_MBITS-1));
45 }
46 
47 
48 ieee754dp ieee754dp_xcpt(ieee754dp r, const char *op, ...)
49 {
50  struct ieee754xctx ax;
51  if (!TSTX())
52  return r;
53 
54  ax.op = op;
55  ax.rt = IEEE754_RT_DP;
56  ax.rv.dp = r;
57  va_start(ax.ap, op);
58  ieee754_xcpt(&ax);
59  va_end(ax.ap);
60  return ax.rv.dp;
61 }
62 
63 ieee754dp ieee754dp_nanxcpt(ieee754dp r, const char *op, ...)
64 {
65  struct ieee754xctx ax;
66 
68 
69  if (!ieee754dp_issnan(r)) /* QNAN does not cause invalid op !! */
70  return r;
71 
73  /* not enabled convert to a quiet NaN */
74  DPMANT(r) &= (~DP_MBIT(DP_MBITS-1));
75  if (ieee754dp_isnan(r))
76  return r;
77  else
78  return ieee754dp_indef();
79  }
80 
81  ax.op = op;
82  ax.rt = 0;
83  ax.rv.dp = r;
84  va_start(ax.ap, op);
85  ieee754_xcpt(&ax);
86  va_end(ax.ap);
87  return ax.rv.dp;
88 }
89 
90 ieee754dp ieee754dp_bestnan(ieee754dp x, ieee754dp y)
91 {
94 
95  if (DPMANT(x) > DPMANT(y))
96  return x;
97  else
98  return y;
99 }
100 
101 
102 static u64 get_rounding(int sn, u64 xm)
103 {
104  /* inexact must round of 3 bits
105  */
106  if (xm & (DP_MBIT(3) - 1)) {
107  switch (ieee754_csr.rm) {
108  case IEEE754_RZ:
109  break;
110  case IEEE754_RN:
111  xm += 0x3 + ((xm >> 3) & 1);
112  /* xm += (xm&0x8)?0x4:0x3 */
113  break;
114  case IEEE754_RU: /* toward +Infinity */
115  if (!sn) /* ?? */
116  xm += 0x8;
117  break;
118  case IEEE754_RD: /* toward -Infinity */
119  if (sn) /* ?? */
120  xm += 0x8;
121  break;
122  }
123  }
124  return xm;
125 }
126 
127 
128 /* generate a normal/denormal number with over,under handling
129  * sn is sign
130  * xe is an unbiased exponent
131  * xm is 3bit extended precision value.
132  */
133 ieee754dp ieee754dp_format(int sn, int xe, u64 xm)
134 {
135  assert(xm); /* we don't gen exact zeros (probably should) */
136 
137  assert((xm >> (DP_MBITS + 1 + 3)) == 0); /* no execess */
138  assert(xm & (DP_HIDDEN_BIT << 3));
139 
140  if (xe < DP_EMIN) {
141  /* strip lower bits */
142  int es = DP_EMIN - xe;
143 
144  if (ieee754_csr.nod) {
147 
148  switch(ieee754_csr.rm) {
149  case IEEE754_RN:
150  case IEEE754_RZ:
151  return ieee754dp_zero(sn);
152  case IEEE754_RU: /* toward +Infinity */
153  if(sn == 0)
154  return ieee754dp_min(0);
155  else
156  return ieee754dp_zero(1);
157  case IEEE754_RD: /* toward -Infinity */
158  if(sn == 0)
159  return ieee754dp_zero(0);
160  else
161  return ieee754dp_min(1);
162  }
163  }
164 
165  if (xe == DP_EMIN - 1
166  && get_rounding(sn, xm) >> (DP_MBITS + 1 + 3))
167  {
168  /* Not tiny after rounding */
170  xm = get_rounding(sn, xm);
171  xm >>= 1;
172  /* Clear grs bits */
173  xm &= ~(DP_MBIT(3) - 1);
174  xe++;
175  }
176  else {
177  /* sticky right shift es bits
178  */
179  xm = XDPSRS(xm, es);
180  xe += es;
181  assert((xm & (DP_HIDDEN_BIT << 3)) == 0);
182  assert(xe == DP_EMIN);
183  }
184  }
185  if (xm & (DP_MBIT(3) - 1)) {
187  if ((xm & (DP_HIDDEN_BIT << 3)) == 0) {
189  }
190 
191  /* inexact must round of 3 bits
192  */
193  xm = get_rounding(sn, xm);
194  /* adjust exponent for rounding add overflowing
195  */
196  if (xm >> (DP_MBITS + 3 + 1)) {
197  /* add causes mantissa overflow */
198  xm >>= 1;
199  xe++;
200  }
201  }
202  /* strip grs bits */
203  xm >>= 3;
204 
205  assert((xm >> (DP_MBITS + 1)) == 0); /* no execess */
206  assert(xe >= DP_EMIN);
207 
208  if (xe > DP_EMAX) {
211  /* -O can be table indexed by (rm,sn) */
212  switch (ieee754_csr.rm) {
213  case IEEE754_RN:
214  return ieee754dp_inf(sn);
215  case IEEE754_RZ:
216  return ieee754dp_max(sn);
217  case IEEE754_RU: /* toward +Infinity */
218  if (sn == 0)
219  return ieee754dp_inf(0);
220  else
221  return ieee754dp_max(1);
222  case IEEE754_RD: /* toward -Infinity */
223  if (sn == 0)
224  return ieee754dp_max(0);
225  else
226  return ieee754dp_inf(1);
227  }
228  }
229  /* gen norm/denorm/zero */
230 
231  if ((xm & DP_HIDDEN_BIT) == 0) {
232  /* we underflow (tiny/zero) */
233  assert(xe == DP_EMIN);
236  return builddp(sn, DP_EMIN - 1 + DP_EBIAS, xm);
237  } else {
238  assert((xm >> (DP_MBITS + 1)) == 0); /* no execess */
239  assert(xm & DP_HIDDEN_BIT);
240 
241  return builddp(sn, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT);
242  }
243 }