Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ieee754sp.c
Go to the documentation of this file.
1 /* IEEE754 floating point arithmetic
2  * single precision
3  */
4 /*
5  * MIPS floating point support
6  * Copyright (C) 1994-2000 Algorithmics Ltd.
7  *
8  * ########################################################################
9  *
10  * This program is free software; you can distribute it and/or modify it
11  * under the terms of the GNU General Public License (Version 2) as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17  * for more details.
18  *
19  * You should have received a copy of the GNU General Public License along
20  * with this program; if not, write to the Free Software Foundation, Inc.,
21  * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
22  *
23  * ########################################################################
24  */
25 
26 
27 #include "ieee754sp.h"
28 
29 int ieee754sp_class(ieee754sp x)
30 {
31  COMPXSP;
32  EXPLODEXSP;
33  return xc;
34 }
35 
36 int ieee754sp_isnan(ieee754sp x)
37 {
39 }
40 
41 int ieee754sp_issnan(ieee754sp x)
42 {
44  return (SPMANT(x) & SP_MBIT(SP_MBITS-1));
45 }
46 
47 
48 ieee754sp ieee754sp_xcpt(ieee754sp r, const char *op, ...)
49 {
50  struct ieee754xctx ax;
51 
52  if (!TSTX())
53  return r;
54 
55  ax.op = op;
56  ax.rt = IEEE754_RT_SP;
57  ax.rv.sp = r;
58  va_start(ax.ap, op);
59  ieee754_xcpt(&ax);
60  va_end(ax.ap);
61  return ax.rv.sp;
62 }
63 
64 ieee754sp ieee754sp_nanxcpt(ieee754sp r, const char *op, ...)
65 {
66  struct ieee754xctx ax;
67 
69 
70  if (!ieee754sp_issnan(r)) /* QNAN does not cause invalid op !! */
71  return r;
72 
74  /* not enabled convert to a quiet NaN */
75  SPMANT(r) &= (~SP_MBIT(SP_MBITS-1));
76  if (ieee754sp_isnan(r))
77  return r;
78  else
79  return ieee754sp_indef();
80  }
81 
82  ax.op = op;
83  ax.rt = 0;
84  ax.rv.sp = r;
85  va_start(ax.ap, op);
86  ieee754_xcpt(&ax);
87  va_end(ax.ap);
88  return ax.rv.sp;
89 }
90 
91 ieee754sp ieee754sp_bestnan(ieee754sp x, ieee754sp y)
92 {
95 
96  if (SPMANT(x) > SPMANT(y))
97  return x;
98  else
99  return y;
100 }
101 
102 
103 static unsigned get_rounding(int sn, unsigned xm)
104 {
105  /* inexact must round of 3 bits
106  */
107  if (xm & (SP_MBIT(3) - 1)) {
108  switch (ieee754_csr.rm) {
109  case IEEE754_RZ:
110  break;
111  case IEEE754_RN:
112  xm += 0x3 + ((xm >> 3) & 1);
113  /* xm += (xm&0x8)?0x4:0x3 */
114  break;
115  case IEEE754_RU: /* toward +Infinity */
116  if (!sn) /* ?? */
117  xm += 0x8;
118  break;
119  case IEEE754_RD: /* toward -Infinity */
120  if (sn) /* ?? */
121  xm += 0x8;
122  break;
123  }
124  }
125  return xm;
126 }
127 
128 
129 /* generate a normal/denormal number with over,under handling
130  * sn is sign
131  * xe is an unbiased exponent
132  * xm is 3bit extended precision value.
133  */
134 ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
135 {
136  assert(xm); /* we don't gen exact zeros (probably should) */
137 
138  assert((xm >> (SP_MBITS + 1 + 3)) == 0); /* no execess */
139  assert(xm & (SP_HIDDEN_BIT << 3));
140 
141  if (xe < SP_EMIN) {
142  /* strip lower bits */
143  int es = SP_EMIN - xe;
144 
145  if (ieee754_csr.nod) {
148 
149  switch(ieee754_csr.rm) {
150  case IEEE754_RN:
151  case IEEE754_RZ:
152  return ieee754sp_zero(sn);
153  case IEEE754_RU: /* toward +Infinity */
154  if(sn == 0)
155  return ieee754sp_min(0);
156  else
157  return ieee754sp_zero(1);
158  case IEEE754_RD: /* toward -Infinity */
159  if(sn == 0)
160  return ieee754sp_zero(0);
161  else
162  return ieee754sp_min(1);
163  }
164  }
165 
166  if (xe == SP_EMIN - 1
167  && get_rounding(sn, xm) >> (SP_MBITS + 1 + 3))
168  {
169  /* Not tiny after rounding */
171  xm = get_rounding(sn, xm);
172  xm >>= 1;
173  /* Clear grs bits */
174  xm &= ~(SP_MBIT(3) - 1);
175  xe++;
176  }
177  else {
178  /* sticky right shift es bits
179  */
180  SPXSRSXn(es);
181  assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
182  assert(xe == SP_EMIN);
183  }
184  }
185  if (xm & (SP_MBIT(3) - 1)) {
187  if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
189  }
190 
191  /* inexact must round of 3 bits
192  */
193  xm = get_rounding(sn, xm);
194  /* adjust exponent for rounding add overflowing
195  */
196  if (xm >> (SP_MBITS + 1 + 3)) {
197  /* add causes mantissa overflow */
198  xm >>= 1;
199  xe++;
200  }
201  }
202  /* strip grs bits */
203  xm >>= 3;
204 
205  assert((xm >> (SP_MBITS + 1)) == 0); /* no execess */
206  assert(xe >= SP_EMIN);
207 
208  if (xe > SP_EMAX) {
211  /* -O can be table indexed by (rm,sn) */
212  switch (ieee754_csr.rm) {
213  case IEEE754_RN:
214  return ieee754sp_inf(sn);
215  case IEEE754_RZ:
216  return ieee754sp_max(sn);
217  case IEEE754_RU: /* toward +Infinity */
218  if (sn == 0)
219  return ieee754sp_inf(0);
220  else
221  return ieee754sp_max(1);
222  case IEEE754_RD: /* toward -Infinity */
223  if (sn == 0)
224  return ieee754sp_max(0);
225  else
226  return ieee754sp_inf(1);
227  }
228  }
229  /* gen norm/denorm/zero */
230 
231  if ((xm & SP_HIDDEN_BIT) == 0) {
232  /* we underflow (tiny/zero) */
233  assert(xe == SP_EMIN);
236  return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
237  } else {
238  assert((xm >> (SP_MBITS + 1)) == 0); /* no execess */
239  assert(xm & SP_HIDDEN_BIT);
240 
241  return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
242  }
243 }