Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
inode-map.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Oracle. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
22 
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
28 
29 static int caching_kthread(void *data)
30 {
31  struct btrfs_root *root = data;
32  struct btrfs_fs_info *fs_info = root->fs_info;
33  struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34  struct btrfs_key key;
35  struct btrfs_path *path;
36  struct extent_buffer *leaf;
37  u64 last = (u64)-1;
38  int slot;
39  int ret;
40 
41  if (!btrfs_test_opt(root, INODE_MAP_CACHE))
42  return 0;
43 
44  path = btrfs_alloc_path();
45  if (!path)
46  return -ENOMEM;
47 
48  /* Since the commit root is read-only, we can safely skip locking. */
49  path->skip_locking = 1;
50  path->search_commit_root = 1;
51  path->reada = 2;
52 
53  key.objectid = BTRFS_FIRST_FREE_OBJECTID;
54  key.offset = 0;
56 again:
57  /* need to make sure the commit_root doesn't disappear */
59 
60  ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61  if (ret < 0)
62  goto out;
63 
64  while (1) {
65  if (btrfs_fs_closing(fs_info))
66  goto out;
67 
68  leaf = path->nodes[0];
69  slot = path->slots[0];
70  if (slot >= btrfs_header_nritems(leaf)) {
71  ret = btrfs_next_leaf(root, path);
72  if (ret < 0)
73  goto out;
74  else if (ret > 0)
75  break;
76 
77  if (need_resched() ||
78  btrfs_transaction_in_commit(fs_info)) {
79  leaf = path->nodes[0];
80 
81  if (btrfs_header_nritems(leaf) == 0) {
82  WARN_ON(1);
83  break;
84  }
85 
86  /*
87  * Save the key so we can advances forward
88  * in the next search.
89  */
90  btrfs_item_key_to_cpu(leaf, &key, 0);
91  btrfs_release_path(path);
92  root->cache_progress = last;
95  goto again;
96  } else
97  continue;
98  }
99 
100  btrfs_item_key_to_cpu(leaf, &key, slot);
101 
102  if (key.type != BTRFS_INODE_ITEM_KEY)
103  goto next;
104 
105  if (key.objectid >= root->highest_objectid)
106  break;
107 
108  if (last != (u64)-1 && last + 1 != key.objectid) {
109  __btrfs_add_free_space(ctl, last + 1,
110  key.objectid - last - 1);
111  wake_up(&root->cache_wait);
112  }
113 
114  last = key.objectid;
115 next:
116  path->slots[0]++;
117  }
118 
119  if (last < root->highest_objectid - 1) {
120  __btrfs_add_free_space(ctl, last + 1,
121  root->highest_objectid - last - 1);
122  }
123 
124  spin_lock(&root->cache_lock);
126  spin_unlock(&root->cache_lock);
127 
128  root->cache_progress = (u64)-1;
129  btrfs_unpin_free_ino(root);
130 out:
131  wake_up(&root->cache_wait);
133 
134  btrfs_free_path(path);
135 
136  return ret;
137 }
138 
139 static void start_caching(struct btrfs_root *root)
140 {
141  struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
142  struct task_struct *tsk;
143  int ret;
144  u64 objectid;
145 
146  if (!btrfs_test_opt(root, INODE_MAP_CACHE))
147  return;
148 
149  spin_lock(&root->cache_lock);
150  if (root->cached != BTRFS_CACHE_NO) {
151  spin_unlock(&root->cache_lock);
152  return;
153  }
154 
155  root->cached = BTRFS_CACHE_STARTED;
156  spin_unlock(&root->cache_lock);
157 
158  ret = load_free_ino_cache(root->fs_info, root);
159  if (ret == 1) {
160  spin_lock(&root->cache_lock);
162  spin_unlock(&root->cache_lock);
163  return;
164  }
165 
166  /*
167  * It can be quite time-consuming to fill the cache by searching
168  * through the extent tree, and this can keep ino allocation path
169  * waiting. Therefore at start we quickly find out the highest
170  * inode number and we know we can use inode numbers which fall in
171  * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
172  */
173  ret = btrfs_find_free_objectid(root, &objectid);
174  if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
175  __btrfs_add_free_space(ctl, objectid,
176  BTRFS_LAST_FREE_OBJECTID - objectid + 1);
177  }
178 
179  tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu\n",
180  root->root_key.objectid);
181  BUG_ON(IS_ERR(tsk)); /* -ENOMEM */
182 }
183 
184 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
185 {
186  if (!btrfs_test_opt(root, INODE_MAP_CACHE))
187  return btrfs_find_free_objectid(root, objectid);
188 
189 again:
190  *objectid = btrfs_find_ino_for_alloc(root);
191 
192  if (*objectid != 0)
193  return 0;
194 
195  start_caching(root);
196 
197  wait_event(root->cache_wait,
198  root->cached == BTRFS_CACHE_FINISHED ||
199  root->free_ino_ctl->free_space > 0);
200 
201  if (root->cached == BTRFS_CACHE_FINISHED &&
202  root->free_ino_ctl->free_space == 0)
203  return -ENOSPC;
204  else
205  goto again;
206 }
207 
208 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
209 {
210  struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
211  struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
212 
213  if (!btrfs_test_opt(root, INODE_MAP_CACHE))
214  return;
215 
216 again:
217  if (root->cached == BTRFS_CACHE_FINISHED) {
218  __btrfs_add_free_space(ctl, objectid, 1);
219  } else {
220  /*
221  * If we are in the process of caching free ino chunks,
222  * to avoid adding the same inode number to the free_ino
223  * tree twice due to cross transaction, we'll leave it
224  * in the pinned tree until a transaction is committed
225  * or the caching work is done.
226  */
227 
228  mutex_lock(&root->fs_commit_mutex);
229  spin_lock(&root->cache_lock);
230  if (root->cached == BTRFS_CACHE_FINISHED) {
231  spin_unlock(&root->cache_lock);
233  goto again;
234  }
235  spin_unlock(&root->cache_lock);
236 
237  start_caching(root);
238 
239  if (objectid <= root->cache_progress ||
240  objectid > root->highest_objectid)
241  __btrfs_add_free_space(ctl, objectid, 1);
242  else
243  __btrfs_add_free_space(pinned, objectid, 1);
244 
246  }
247 }
248 
249 /*
250  * When a transaction is committed, we'll move those inode numbers which
251  * are smaller than root->cache_progress from pinned tree to free_ino tree,
252  * and others will just be dropped, because the commit root we were
253  * searching has changed.
254  *
255  * Must be called with root->fs_commit_mutex held
256  */
258 {
259  struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
260  struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
261  struct btrfs_free_space *info;
262  struct rb_node *n;
263  u64 count;
264 
265  if (!btrfs_test_opt(root, INODE_MAP_CACHE))
266  return;
267 
268  while (1) {
269  n = rb_first(rbroot);
270  if (!n)
271  break;
272 
273  info = rb_entry(n, struct btrfs_free_space, offset_index);
274  BUG_ON(info->bitmap); /* Logic error */
275 
276  if (info->offset > root->cache_progress)
277  goto free;
278  else if (info->offset + info->bytes > root->cache_progress)
279  count = root->cache_progress - info->offset + 1;
280  else
281  count = info->bytes;
282 
283  __btrfs_add_free_space(ctl, info->offset, count);
284 free:
285  rb_erase(&info->offset_index, rbroot);
286  kfree(info);
287  }
288 }
289 
290 #define INIT_THRESHOLD (((1024 * 32) / 2) / sizeof(struct btrfs_free_space))
291 #define INODES_PER_BITMAP (PAGE_CACHE_SIZE * 8)
292 
293 /*
294  * The goal is to keep the memory used by the free_ino tree won't
295  * exceed the memory if we use bitmaps only.
296  */
297 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
298 {
299  struct btrfs_free_space *info;
300  struct rb_node *n;
301  int max_ino;
302  int max_bitmaps;
303 
304  n = rb_last(&ctl->free_space_offset);
305  if (!n) {
307  return;
308  }
309  info = rb_entry(n, struct btrfs_free_space, offset_index);
310 
311  /*
312  * Find the maximum inode number in the filesystem. Note we
313  * ignore the fact that this can be a bitmap, because we are
314  * not doing precise calculation.
315  */
316  max_ino = info->bytes - 1;
317 
318  max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
319  if (max_bitmaps <= ctl->total_bitmaps) {
320  ctl->extents_thresh = 0;
321  return;
322  }
323 
324  ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
325  PAGE_CACHE_SIZE / sizeof(*info);
326 }
327 
328 /*
329  * We don't fall back to bitmap, if we are below the extents threshold
330  * or this chunk of inode numbers is a big one.
331  */
332 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
333  struct btrfs_free_space *info)
334 {
335  if (ctl->free_extents < ctl->extents_thresh ||
336  info->bytes > INODES_PER_BITMAP / 10)
337  return false;
338 
339  return true;
340 }
341 
342 static struct btrfs_free_space_op free_ino_op = {
343  .recalc_thresholds = recalculate_thresholds,
344  .use_bitmap = use_bitmap,
345 };
346 
347 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
348 {
349 }
350 
351 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
352  struct btrfs_free_space *info)
353 {
354  /*
355  * We always use extents for two reasons:
356  *
357  * - The pinned tree is only used during the process of caching
358  * work.
359  * - Make code simpler. See btrfs_unpin_free_ino().
360  */
361  return false;
362 }
363 
364 static struct btrfs_free_space_op pinned_free_ino_op = {
365  .recalc_thresholds = pinned_recalc_thresholds,
366  .use_bitmap = pinned_use_bitmap,
367 };
368 
370 {
371  struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
372  struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
373 
374  spin_lock_init(&ctl->tree_lock);
375  ctl->unit = 1;
376  ctl->start = 0;
377  ctl->private = NULL;
378  ctl->op = &free_ino_op;
379 
380  /*
381  * Initially we allow to use 16K of ram to cache chunks of
382  * inode numbers before we resort to bitmaps. This is somewhat
383  * arbitrary, but it will be adjusted in runtime.
384  */
386 
387  spin_lock_init(&pinned->tree_lock);
388  pinned->unit = 1;
389  pinned->start = 0;
390  pinned->private = NULL;
391  pinned->extents_thresh = 0;
392  pinned->op = &pinned_free_ino_op;
393 }
394 
396  struct btrfs_trans_handle *trans)
397 {
398  struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
399  struct btrfs_path *path;
400  struct inode *inode;
401  struct btrfs_block_rsv *rsv;
402  u64 num_bytes;
403  u64 alloc_hint = 0;
404  int ret;
405  int prealloc;
406  bool retry = false;
407 
408  /* only fs tree and subvol/snap needs ino cache */
409  if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
410  (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
411  root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
412  return 0;
413 
414  /* Don't save inode cache if we are deleting this root */
415  if (btrfs_root_refs(&root->root_item) == 0 &&
416  root != root->fs_info->tree_root)
417  return 0;
418 
419  if (!btrfs_test_opt(root, INODE_MAP_CACHE))
420  return 0;
421 
422  path = btrfs_alloc_path();
423  if (!path)
424  return -ENOMEM;
425 
426  rsv = trans->block_rsv;
427  trans->block_rsv = &root->fs_info->trans_block_rsv;
428 
429  num_bytes = trans->bytes_reserved;
430  /*
431  * 1 item for inode item insertion if need
432  * 3 items for inode item update (in the worst case)
433  * 1 item for free space object
434  * 3 items for pre-allocation
435  */
436  trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 8);
437  ret = btrfs_block_rsv_add_noflush(root, trans->block_rsv,
438  trans->bytes_reserved);
439  if (ret)
440  goto out;
441  trace_btrfs_space_reservation(root->fs_info, "ino_cache",
442  trans->transid, trans->bytes_reserved, 1);
443 again:
444  inode = lookup_free_ino_inode(root, path);
445  if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
446  ret = PTR_ERR(inode);
447  goto out_release;
448  }
449 
450  if (IS_ERR(inode)) {
451  BUG_ON(retry); /* Logic error */
452  retry = true;
453 
454  ret = create_free_ino_inode(root, trans, path);
455  if (ret)
456  goto out_release;
457  goto again;
458  }
459 
460  BTRFS_I(inode)->generation = 0;
461  ret = btrfs_update_inode(trans, root, inode);
462  if (ret) {
463  btrfs_abort_transaction(trans, root, ret);
464  goto out_put;
465  }
466 
467  if (i_size_read(inode) > 0) {
468  ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
469  if (ret) {
470  btrfs_abort_transaction(trans, root, ret);
471  goto out_put;
472  }
473  }
474 
475  spin_lock(&root->cache_lock);
476  if (root->cached != BTRFS_CACHE_FINISHED) {
477  ret = -1;
478  spin_unlock(&root->cache_lock);
479  goto out_put;
480  }
481  spin_unlock(&root->cache_lock);
482 
483  spin_lock(&ctl->tree_lock);
484  prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
485  prealloc = ALIGN(prealloc, PAGE_CACHE_SIZE);
486  prealloc += ctl->total_bitmaps * PAGE_CACHE_SIZE;
487  spin_unlock(&ctl->tree_lock);
488 
489  /* Just to make sure we have enough space */
490  prealloc += 8 * PAGE_CACHE_SIZE;
491 
492  ret = btrfs_delalloc_reserve_space(inode, prealloc);
493  if (ret)
494  goto out_put;
495 
496  ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
497  prealloc, prealloc, &alloc_hint);
498  if (ret) {
499  btrfs_delalloc_release_space(inode, prealloc);
500  goto out_put;
501  }
502  btrfs_free_reserved_data_space(inode, prealloc);
503 
504  ret = btrfs_write_out_ino_cache(root, trans, path);
505 out_put:
506  iput(inode);
507 out_release:
508  trace_btrfs_space_reservation(root->fs_info, "ino_cache",
509  trans->transid, trans->bytes_reserved, 0);
510  btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
511 out:
512  trans->block_rsv = rsv;
513  trans->bytes_reserved = num_bytes;
514 
515  btrfs_free_path(path);
516  return ret;
517 }
518 
519 static int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
520 {
521  struct btrfs_path *path;
522  int ret;
523  struct extent_buffer *l;
524  struct btrfs_key search_key;
525  struct btrfs_key found_key;
526  int slot;
527 
528  path = btrfs_alloc_path();
529  if (!path)
530  return -ENOMEM;
531 
532  search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
533  search_key.type = -1;
534  search_key.offset = (u64)-1;
535  ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
536  if (ret < 0)
537  goto error;
538  BUG_ON(ret == 0); /* Corruption */
539  if (path->slots[0] > 0) {
540  slot = path->slots[0] - 1;
541  l = path->nodes[0];
542  btrfs_item_key_to_cpu(l, &found_key, slot);
543  *objectid = max_t(u64, found_key.objectid,
545  } else {
546  *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
547  }
548  ret = 0;
549 error:
550  btrfs_free_path(path);
551  return ret;
552 }
553 
554 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
555 {
556  int ret;
557  mutex_lock(&root->objectid_mutex);
558 
560  ret = btrfs_find_highest_objectid(root,
561  &root->highest_objectid);
562  if (ret)
563  goto out;
564  }
565 
567  ret = -ENOSPC;
568  goto out;
569  }
570 
571  *objectid = ++root->highest_objectid;
572  ret = 0;
573 out:
575  return ret;
576 }