Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kcmp.c
Go to the documentation of this file.
1 #include <linux/kernel.h>
2 #include <linux/syscalls.h>
3 #include <linux/fdtable.h>
4 #include <linux/string.h>
5 #include <linux/random.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/errno.h>
9 #include <linux/cache.h>
10 #include <linux/bug.h>
11 #include <linux/err.h>
12 #include <linux/kcmp.h>
13 
14 #include <asm/unistd.h>
15 
16 /*
17  * We don't expose the real in-memory order of objects for security reasons.
18  * But still the comparison results should be suitable for sorting. So we
19  * obfuscate kernel pointers values and compare the production instead.
20  *
21  * The obfuscation is done in two steps. First we xor the kernel pointer with
22  * a random value, which puts pointer into a new position in a reordered space.
23  * Secondly we multiply the xor production with a large odd random number to
24  * permute its bits even more (the odd multiplier guarantees that the product
25  * is unique ever after the high bits are truncated, since any odd number is
26  * relative prime to 2^n).
27  *
28  * Note also that the obfuscation itself is invisible to userspace and if needed
29  * it can be changed to an alternate scheme.
30  */
31 static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
32 
33 static long kptr_obfuscate(long v, int type)
34 {
35  return (v ^ cookies[type][0]) * cookies[type][1];
36 }
37 
38 /*
39  * 0 - equal, i.e. v1 = v2
40  * 1 - less than, i.e. v1 < v2
41  * 2 - greater than, i.e. v1 > v2
42  * 3 - not equal but ordering unavailable (reserved for future)
43  */
44 static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
45 {
46  long ret;
47 
48  ret = kptr_obfuscate((long)v1, type) - kptr_obfuscate((long)v2, type);
49 
50  return (ret < 0) | ((ret > 0) << 1);
51 }
52 
53 /* The caller must have pinned the task */
54 static struct file *
55 get_file_raw_ptr(struct task_struct *task, unsigned int idx)
56 {
57  struct file *file = NULL;
58 
59  task_lock(task);
60  rcu_read_lock();
61 
62  if (task->files)
63  file = fcheck_files(task->files, idx);
64 
65  rcu_read_unlock();
66  task_unlock(task);
67 
68  return file;
69 }
70 
71 static void kcmp_unlock(struct mutex *m1, struct mutex *m2)
72 {
73  if (likely(m2 != m1))
74  mutex_unlock(m2);
75  mutex_unlock(m1);
76 }
77 
78 static int kcmp_lock(struct mutex *m1, struct mutex *m2)
79 {
80  int err;
81 
82  if (m2 > m1)
83  swap(m1, m2);
84 
85  err = mutex_lock_killable(m1);
86  if (!err && likely(m1 != m2)) {
88  if (err)
89  mutex_unlock(m1);
90  }
91 
92  return err;
93 }
94 
95 SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
96  unsigned long, idx1, unsigned long, idx2)
97 {
98  struct task_struct *task1, *task2;
99  int ret;
100 
101  rcu_read_lock();
102 
103  /*
104  * Tasks are looked up in caller's PID namespace only.
105  */
106  task1 = find_task_by_vpid(pid1);
107  task2 = find_task_by_vpid(pid2);
108  if (!task1 || !task2)
109  goto err_no_task;
110 
111  get_task_struct(task1);
112  get_task_struct(task2);
113 
114  rcu_read_unlock();
115 
116  /*
117  * One should have enough rights to inspect task details.
118  */
119  ret = kcmp_lock(&task1->signal->cred_guard_mutex,
120  &task2->signal->cred_guard_mutex);
121  if (ret)
122  goto err;
123  if (!ptrace_may_access(task1, PTRACE_MODE_READ) ||
125  ret = -EPERM;
126  goto err_unlock;
127  }
128 
129  switch (type) {
130  case KCMP_FILE: {
131  struct file *filp1, *filp2;
132 
133  filp1 = get_file_raw_ptr(task1, idx1);
134  filp2 = get_file_raw_ptr(task2, idx2);
135 
136  if (filp1 && filp2)
137  ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
138  else
139  ret = -EBADF;
140  break;
141  }
142  case KCMP_VM:
143  ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
144  break;
145  case KCMP_FILES:
146  ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
147  break;
148  case KCMP_FS:
149  ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
150  break;
151  case KCMP_SIGHAND:
152  ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
153  break;
154  case KCMP_IO:
155  ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
156  break;
157  case KCMP_SYSVSEM:
158 #ifdef CONFIG_SYSVIPC
159  ret = kcmp_ptr(task1->sysvsem.undo_list,
160  task2->sysvsem.undo_list,
161  KCMP_SYSVSEM);
162 #else
163  ret = -EOPNOTSUPP;
164 #endif
165  break;
166  default:
167  ret = -EINVAL;
168  break;
169  }
170 
171 err_unlock:
172  kcmp_unlock(&task1->signal->cred_guard_mutex,
173  &task2->signal->cred_guard_mutex);
174 err:
175  put_task_struct(task1);
176  put_task_struct(task2);
177 
178  return ret;
179 
180 err_no_task:
181  rcu_read_unlock();
182  return -ESRCH;
183 }
184 
185 static __init int kcmp_cookies_init(void)
186 {
187  int i;
188 
189  get_random_bytes(cookies, sizeof(cookies));
190 
191  for (i = 0; i < KCMP_TYPES; i++)
192  cookies[i][1] |= (~(~0UL >> 1) | 1);
193 
194  return 0;
195 }
196 arch_initcall(kcmp_cookies_init);