Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
profile.c
Go to the documentation of this file.
1 /*
2  * linux/kernel/profile.c
3  * Simple profiling. Manages a direct-mapped profile hit count buffer,
4  * with configurable resolution, support for restricting the cpus on
5  * which profiling is done, and switching between cpu time and
6  * schedule() calls via kernel command line parameters passed at boot.
7  *
8  * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  * Red Hat, July 2004
10  * Consolidation of architecture support code for profiling,
11  * William Irwin, Oracle, July 2004
12  * Amortized hit count accounting via per-cpu open-addressed hashtables
13  * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/export.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
33 };
34 #define PROFILE_GRPSHIFT 3
35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
47 
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 int profile_setup(char *str)
56 {
57  static char schedstr[] = "schedule";
58  static char sleepstr[] = "sleep";
59  static char kvmstr[] = "kvm";
60  int par;
61 
62  if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
65  if (str[strlen(sleepstr)] == ',')
66  str += strlen(sleepstr) + 1;
67  if (get_option(&str, &par))
68  prof_shift = par;
70  "kernel sleep profiling enabled (shift: %ld)\n",
71  prof_shift);
72 #else
74  "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76  } else if (!strncmp(str, schedstr, strlen(schedstr))) {
78  if (str[strlen(schedstr)] == ',')
79  str += strlen(schedstr) + 1;
80  if (get_option(&str, &par))
81  prof_shift = par;
83  "kernel schedule profiling enabled (shift: %ld)\n",
84  prof_shift);
85  } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
87  if (str[strlen(kvmstr)] == ',')
88  str += strlen(kvmstr) + 1;
89  if (get_option(&str, &par))
90  prof_shift = par;
92  "kernel KVM profiling enabled (shift: %ld)\n",
93  prof_shift);
94  } else if (get_option(&str, &par)) {
95  prof_shift = par;
97  printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98  prof_shift);
99  }
100  return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
106 {
107  int buffer_bytes;
108  if (!prof_on)
109  return 0;
110 
111  /* only text is profiled */
112  prof_len = (_etext - _stext) >> prof_shift;
113  buffer_bytes = prof_len*sizeof(atomic_t);
114 
115  if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
116  return -ENOMEM;
117 
118  cpumask_copy(prof_cpu_mask, cpu_possible_mask);
119 
120  prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
121  if (prof_buffer)
122  return 0;
123 
124  prof_buffer = alloc_pages_exact(buffer_bytes,
126  if (prof_buffer)
127  return 0;
128 
129  prof_buffer = vzalloc(buffer_bytes);
130  if (prof_buffer)
131  return 0;
132 
133  free_cpumask_var(prof_cpu_mask);
134  return -ENOMEM;
135 }
136 
137 /* Profile event notifications */
138 
139 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
140 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
141 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
142 
144 {
145  blocking_notifier_call_chain(&task_exit_notifier, 0, task);
146 }
147 
149 {
150  int ret;
151  ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
152  return (ret == NOTIFY_OK) ? 1 : 0;
153 }
154 
155 void profile_munmap(unsigned long addr)
156 {
157  blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
158 }
159 
161 {
162  return atomic_notifier_chain_register(&task_free_notifier, n);
163 }
165 
167 {
168  return atomic_notifier_chain_unregister(&task_free_notifier, n);
169 }
171 
173 {
174  int err = -EINVAL;
175 
176  switch (type) {
177  case PROFILE_TASK_EXIT:
179  &task_exit_notifier, n);
180  break;
181  case PROFILE_MUNMAP:
183  &munmap_notifier, n);
184  break;
185  }
186 
187  return err;
188 }
190 
192 {
193  int err = -EINVAL;
194 
195  switch (type) {
196  case PROFILE_TASK_EXIT:
198  &task_exit_notifier, n);
199  break;
200  case PROFILE_MUNMAP:
202  &munmap_notifier, n);
203  break;
204  }
205 
206  return err;
207 }
209 
210 int register_timer_hook(int (*hook)(struct pt_regs *))
211 {
212  if (timer_hook)
213  return -EBUSY;
214  timer_hook = hook;
215  return 0;
216 }
218 
219 void unregister_timer_hook(int (*hook)(struct pt_regs *))
220 {
221  WARN_ON(hook != timer_hook);
222  timer_hook = NULL;
223  /* make sure all CPUs see the NULL hook */
224  synchronize_sched(); /* Allow ongoing interrupts to complete. */
225 }
227 
228 
229 #ifdef CONFIG_SMP
230 /*
231  * Each cpu has a pair of open-addressed hashtables for pending
232  * profile hits. read_profile() IPI's all cpus to request them
233  * to flip buffers and flushes their contents to prof_buffer itself.
234  * Flip requests are serialized by the profile_flip_mutex. The sole
235  * use of having a second hashtable is for avoiding cacheline
236  * contention that would otherwise happen during flushes of pending
237  * profile hits required for the accuracy of reported profile hits
238  * and so resurrect the interrupt livelock issue.
239  *
240  * The open-addressed hashtables are indexed by profile buffer slot
241  * and hold the number of pending hits to that profile buffer slot on
242  * a cpu in an entry. When the hashtable overflows, all pending hits
243  * are accounted to their corresponding profile buffer slots with
244  * atomic_add() and the hashtable emptied. As numerous pending hits
245  * may be accounted to a profile buffer slot in a hashtable entry,
246  * this amortizes a number of atomic profile buffer increments likely
247  * to be far larger than the number of entries in the hashtable,
248  * particularly given that the number of distinct profile buffer
249  * positions to which hits are accounted during short intervals (e.g.
250  * several seconds) is usually very small. Exclusion from buffer
251  * flipping is provided by interrupt disablement (note that for
252  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
253  * process context).
254  * The hash function is meant to be lightweight as opposed to strong,
255  * and was vaguely inspired by ppc64 firmware-supported inverted
256  * pagetable hash functions, but uses a full hashtable full of finite
257  * collision chains, not just pairs of them.
258  *
259  * -- wli
260  */
261 static void __profile_flip_buffers(void *unused)
262 {
263  int cpu = smp_processor_id();
264 
265  per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
266 }
267 
268 static void profile_flip_buffers(void)
269 {
270  int i, j, cpu;
271 
272  mutex_lock(&profile_flip_mutex);
273  j = per_cpu(cpu_profile_flip, get_cpu());
274  put_cpu();
275  on_each_cpu(__profile_flip_buffers, NULL, 1);
276  for_each_online_cpu(cpu) {
277  struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
278  for (i = 0; i < NR_PROFILE_HIT; ++i) {
279  if (!hits[i].hits) {
280  if (hits[i].pc)
281  hits[i].pc = 0;
282  continue;
283  }
284  atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
285  hits[i].hits = hits[i].pc = 0;
286  }
287  }
288  mutex_unlock(&profile_flip_mutex);
289 }
290 
291 static void profile_discard_flip_buffers(void)
292 {
293  int i, cpu;
294 
295  mutex_lock(&profile_flip_mutex);
296  i = per_cpu(cpu_profile_flip, get_cpu());
297  put_cpu();
298  on_each_cpu(__profile_flip_buffers, NULL, 1);
299  for_each_online_cpu(cpu) {
300  struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
301  memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
302  }
303  mutex_unlock(&profile_flip_mutex);
304 }
305 
306 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
307 {
308  unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
309  int i, j, cpu;
310  struct profile_hit *hits;
311 
312  pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
313  i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
314  secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
315  cpu = get_cpu();
316  hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
317  if (!hits) {
318  put_cpu();
319  return;
320  }
321  /*
322  * We buffer the global profiler buffer into a per-CPU
323  * queue and thus reduce the number of global (and possibly
324  * NUMA-alien) accesses. The write-queue is self-coalescing:
325  */
326  local_irq_save(flags);
327  do {
328  for (j = 0; j < PROFILE_GRPSZ; ++j) {
329  if (hits[i + j].pc == pc) {
330  hits[i + j].hits += nr_hits;
331  goto out;
332  } else if (!hits[i + j].hits) {
333  hits[i + j].pc = pc;
334  hits[i + j].hits = nr_hits;
335  goto out;
336  }
337  }
338  i = (i + secondary) & (NR_PROFILE_HIT - 1);
339  } while (i != primary);
340 
341  /*
342  * Add the current hit(s) and flush the write-queue out
343  * to the global buffer:
344  */
345  atomic_add(nr_hits, &prof_buffer[pc]);
346  for (i = 0; i < NR_PROFILE_HIT; ++i) {
347  atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
348  hits[i].pc = hits[i].hits = 0;
349  }
350 out:
351  local_irq_restore(flags);
352  put_cpu();
353 }
354 
356  unsigned long action, void *__cpu)
357 {
358  int node, cpu = (unsigned long)__cpu;
359  struct page *page;
360 
361  switch (action) {
362  case CPU_UP_PREPARE:
364  node = cpu_to_mem(cpu);
365  per_cpu(cpu_profile_flip, cpu) = 0;
366  if (!per_cpu(cpu_profile_hits, cpu)[1]) {
367  page = alloc_pages_exact_node(node,
369  0);
370  if (!page)
371  return notifier_from_errno(-ENOMEM);
372  per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
373  }
374  if (!per_cpu(cpu_profile_hits, cpu)[0]) {
375  page = alloc_pages_exact_node(node,
377  0);
378  if (!page)
379  goto out_free;
380  per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
381  }
382  break;
383 out_free:
384  page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
385  per_cpu(cpu_profile_hits, cpu)[1] = NULL;
386  __free_page(page);
387  return notifier_from_errno(-ENOMEM);
388  case CPU_ONLINE:
389  case CPU_ONLINE_FROZEN:
390  if (prof_cpu_mask != NULL)
391  cpumask_set_cpu(cpu, prof_cpu_mask);
392  break;
393  case CPU_UP_CANCELED:
395  case CPU_DEAD:
396  case CPU_DEAD_FROZEN:
397  if (prof_cpu_mask != NULL)
398  cpumask_clear_cpu(cpu, prof_cpu_mask);
399  if (per_cpu(cpu_profile_hits, cpu)[0]) {
400  page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
401  per_cpu(cpu_profile_hits, cpu)[0] = NULL;
402  __free_page(page);
403  }
404  if (per_cpu(cpu_profile_hits, cpu)[1]) {
405  page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
406  per_cpu(cpu_profile_hits, cpu)[1] = NULL;
407  __free_page(page);
408  }
409  break;
410  }
411  return NOTIFY_OK;
412 }
413 #else /* !CONFIG_SMP */
414 #define profile_flip_buffers() do { } while (0)
415 #define profile_discard_flip_buffers() do { } while (0)
416 #define profile_cpu_callback NULL
417 
418 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
419 {
420  unsigned long pc;
421  pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
422  atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
423 }
424 #endif /* !CONFIG_SMP */
425 
426 void profile_hits(int type, void *__pc, unsigned int nr_hits)
427 {
428  if (prof_on != type || !prof_buffer)
429  return;
430  do_profile_hits(type, __pc, nr_hits);
431 }
433 
434 void profile_tick(int type)
435 {
436  struct pt_regs *regs = get_irq_regs();
437 
438  if (type == CPU_PROFILING && timer_hook)
439  timer_hook(regs);
440  if (!user_mode(regs) && prof_cpu_mask != NULL &&
441  cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
442  profile_hit(type, (void *)profile_pc(regs));
443 }
444 
445 #ifdef CONFIG_PROC_FS
446 #include <linux/proc_fs.h>
447 #include <linux/seq_file.h>
448 #include <asm/uaccess.h>
449 
450 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
451 {
452  seq_cpumask(m, prof_cpu_mask);
453  seq_putc(m, '\n');
454  return 0;
455 }
456 
457 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
458 {
459  return single_open(file, prof_cpu_mask_proc_show, NULL);
460 }
461 
462 static ssize_t prof_cpu_mask_proc_write(struct file *file,
463  const char __user *buffer, size_t count, loff_t *pos)
464 {
465  cpumask_var_t new_value;
466  int err;
467 
468  if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
469  return -ENOMEM;
470 
471  err = cpumask_parse_user(buffer, count, new_value);
472  if (!err) {
473  cpumask_copy(prof_cpu_mask, new_value);
474  err = count;
475  }
476  free_cpumask_var(new_value);
477  return err;
478 }
479 
480 static const struct file_operations prof_cpu_mask_proc_fops = {
481  .open = prof_cpu_mask_proc_open,
482  .read = seq_read,
483  .llseek = seq_lseek,
484  .release = single_release,
485  .write = prof_cpu_mask_proc_write,
486 };
487 
488 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
489 {
490  /* create /proc/irq/prof_cpu_mask */
491  proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
492 }
493 
494 /*
495  * This function accesses profiling information. The returned data is
496  * binary: the sampling step and the actual contents of the profile
497  * buffer. Use of the program readprofile is recommended in order to
498  * get meaningful info out of these data.
499  */
500 static ssize_t
501 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
502 {
503  unsigned long p = *ppos;
504  ssize_t read;
505  char *pnt;
506  unsigned int sample_step = 1 << prof_shift;
507 
509  if (p >= (prof_len+1)*sizeof(unsigned int))
510  return 0;
511  if (count > (prof_len+1)*sizeof(unsigned int) - p)
512  count = (prof_len+1)*sizeof(unsigned int) - p;
513  read = 0;
514 
515  while (p < sizeof(unsigned int) && count > 0) {
516  if (put_user(*((char *)(&sample_step)+p), buf))
517  return -EFAULT;
518  buf++; p++; count--; read++;
519  }
520  pnt = (char *)prof_buffer + p - sizeof(atomic_t);
521  if (copy_to_user(buf, (void *)pnt, count))
522  return -EFAULT;
523  read += count;
524  *ppos += read;
525  return read;
526 }
527 
528 /*
529  * Writing to /proc/profile resets the counters
530  *
531  * Writing a 'profiling multiplier' value into it also re-sets the profiling
532  * interrupt frequency, on architectures that support this.
533  */
534 static ssize_t write_profile(struct file *file, const char __user *buf,
535  size_t count, loff_t *ppos)
536 {
537 #ifdef CONFIG_SMP
538  extern int setup_profiling_timer(unsigned int multiplier);
539 
540  if (count == sizeof(int)) {
541  unsigned int multiplier;
542 
543  if (copy_from_user(&multiplier, buf, sizeof(int)))
544  return -EFAULT;
545 
546  if (setup_profiling_timer(multiplier))
547  return -EINVAL;
548  }
549 #endif
551  memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
552  return count;
553 }
554 
555 static const struct file_operations proc_profile_operations = {
556  .read = read_profile,
557  .write = write_profile,
558  .llseek = default_llseek,
559 };
560 
561 #ifdef CONFIG_SMP
562 static void profile_nop(void *unused)
563 {
564 }
565 
566 static int create_hash_tables(void)
567 {
568  int cpu;
569 
570  for_each_online_cpu(cpu) {
571  int node = cpu_to_mem(cpu);
572  struct page *page;
573 
574  page = alloc_pages_exact_node(node,
576  0);
577  if (!page)
578  goto out_cleanup;
579  per_cpu(cpu_profile_hits, cpu)[1]
580  = (struct profile_hit *)page_address(page);
581  page = alloc_pages_exact_node(node,
583  0);
584  if (!page)
585  goto out_cleanup;
586  per_cpu(cpu_profile_hits, cpu)[0]
587  = (struct profile_hit *)page_address(page);
588  }
589  return 0;
590 out_cleanup:
591  prof_on = 0;
592  smp_mb();
593  on_each_cpu(profile_nop, NULL, 1);
594  for_each_online_cpu(cpu) {
595  struct page *page;
596 
597  if (per_cpu(cpu_profile_hits, cpu)[0]) {
598  page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
599  per_cpu(cpu_profile_hits, cpu)[0] = NULL;
600  __free_page(page);
601  }
602  if (per_cpu(cpu_profile_hits, cpu)[1]) {
603  page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
604  per_cpu(cpu_profile_hits, cpu)[1] = NULL;
605  __free_page(page);
606  }
607  }
608  return -1;
609 }
610 #else
611 #define create_hash_tables() ({ 0; })
612 #endif
613 
614 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
615 {
616  struct proc_dir_entry *entry;
617 
618  if (!prof_on)
619  return 0;
620  if (create_hash_tables())
621  return -ENOMEM;
622  entry = proc_create("profile", S_IWUSR | S_IRUGO,
623  NULL, &proc_profile_operations);
624  if (!entry)
625  return 0;
626  entry->size = (1+prof_len) * sizeof(atomic_t);
628  return 0;
629 }
630 module_init(create_proc_profile);
631 #endif /* CONFIG_PROC_FS */