Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sys.c
Go to the documentation of this file.
1 /*
2  * linux/kernel/sys.c
3  *
4  * Copyright (C) 1991, 1992 Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 
51 #include <linux/kmsg_dump.h>
52 /* Move somewhere else to avoid recompiling? */
53 #include <generated/utsrelease.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/unistd.h>
58 
59 #ifndef SET_UNALIGN_CTL
60 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
61 #endif
62 #ifndef GET_UNALIGN_CTL
63 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
64 #endif
65 #ifndef SET_FPEMU_CTL
66 # define SET_FPEMU_CTL(a,b) (-EINVAL)
67 #endif
68 #ifndef GET_FPEMU_CTL
69 # define GET_FPEMU_CTL(a,b) (-EINVAL)
70 #endif
71 #ifndef SET_FPEXC_CTL
72 # define SET_FPEXC_CTL(a,b) (-EINVAL)
73 #endif
74 #ifndef GET_FPEXC_CTL
75 # define GET_FPEXC_CTL(a,b) (-EINVAL)
76 #endif
77 #ifndef GET_ENDIAN
78 # define GET_ENDIAN(a,b) (-EINVAL)
79 #endif
80 #ifndef SET_ENDIAN
81 # define SET_ENDIAN(a,b) (-EINVAL)
82 #endif
83 #ifndef GET_TSC_CTL
84 # define GET_TSC_CTL(a) (-EINVAL)
85 #endif
86 #ifndef SET_TSC_CTL
87 # define SET_TSC_CTL(a) (-EINVAL)
88 #endif
89 
90 /*
91  * this is where the system-wide overflow UID and GID are defined, for
92  * architectures that now have 32-bit UID/GID but didn't in the past
93  */
94 
97 
100 
101 /*
102  * the same as above, but for filesystems which can only store a 16-bit
103  * UID and GID. as such, this is needed on all architectures
104  */
105 
108 
111 
112 /*
113  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114  */
115 
116 int C_A_D = 1;
117 struct pid *cad_pid;
118 EXPORT_SYMBOL(cad_pid);
119 
120 /*
121  * If set, this is used for preparing the system to power off.
122  */
123 
125 
126 /*
127  * Returns true if current's euid is same as p's uid or euid,
128  * or has CAP_SYS_NICE to p's user_ns.
129  *
130  * Called with rcu_read_lock, creds are safe
131  */
132 static bool set_one_prio_perm(struct task_struct *p)
133 {
134  const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135 
136  if (uid_eq(pcred->uid, cred->euid) ||
137  uid_eq(pcred->euid, cred->euid))
138  return true;
139  if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
140  return true;
141  return false;
142 }
143 
144 /*
145  * set the priority of a task
146  * - the caller must hold the RCU read lock
147  */
148 static int set_one_prio(struct task_struct *p, int niceval, int error)
149 {
150  int no_nice;
151 
152  if (!set_one_prio_perm(p)) {
153  error = -EPERM;
154  goto out;
155  }
156  if (niceval < task_nice(p) && !can_nice(p, niceval)) {
157  error = -EACCES;
158  goto out;
159  }
160  no_nice = security_task_setnice(p, niceval);
161  if (no_nice) {
162  error = no_nice;
163  goto out;
164  }
165  if (error == -ESRCH)
166  error = 0;
167  set_user_nice(p, niceval);
168 out:
169  return error;
170 }
171 
172 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
173 {
174  struct task_struct *g, *p;
175  struct user_struct *user;
176  const struct cred *cred = current_cred();
177  int error = -EINVAL;
178  struct pid *pgrp;
179  kuid_t uid;
180 
181  if (which > PRIO_USER || which < PRIO_PROCESS)
182  goto out;
183 
184  /* normalize: avoid signed division (rounding problems) */
185  error = -ESRCH;
186  if (niceval < -20)
187  niceval = -20;
188  if (niceval > 19)
189  niceval = 19;
190 
191  rcu_read_lock();
193  switch (which) {
194  case PRIO_PROCESS:
195  if (who)
196  p = find_task_by_vpid(who);
197  else
198  p = current;
199  if (p)
200  error = set_one_prio(p, niceval, error);
201  break;
202  case PRIO_PGRP:
203  if (who)
204  pgrp = find_vpid(who);
205  else
206  pgrp = task_pgrp(current);
207  do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208  error = set_one_prio(p, niceval, error);
210  break;
211  case PRIO_USER:
212  uid = make_kuid(cred->user_ns, who);
213  user = cred->user;
214  if (!who)
215  uid = cred->uid;
216  else if (!uid_eq(uid, cred->uid) &&
217  !(user = find_user(uid)))
218  goto out_unlock; /* No processes for this user */
219 
220  do_each_thread(g, p) {
221  if (uid_eq(task_uid(p), uid))
222  error = set_one_prio(p, niceval, error);
223  } while_each_thread(g, p);
224  if (!uid_eq(uid, cred->uid))
225  free_uid(user); /* For find_user() */
226  break;
227  }
228 out_unlock:
230  rcu_read_unlock();
231 out:
232  return error;
233 }
234 
235 /*
236  * Ugh. To avoid negative return values, "getpriority()" will
237  * not return the normal nice-value, but a negated value that
238  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
239  * to stay compatible.
240  */
241 SYSCALL_DEFINE2(getpriority, int, which, int, who)
242 {
243  struct task_struct *g, *p;
244  struct user_struct *user;
245  const struct cred *cred = current_cred();
246  long niceval, retval = -ESRCH;
247  struct pid *pgrp;
248  kuid_t uid;
249 
250  if (which > PRIO_USER || which < PRIO_PROCESS)
251  return -EINVAL;
252 
253  rcu_read_lock();
255  switch (which) {
256  case PRIO_PROCESS:
257  if (who)
258  p = find_task_by_vpid(who);
259  else
260  p = current;
261  if (p) {
262  niceval = 20 - task_nice(p);
263  if (niceval > retval)
264  retval = niceval;
265  }
266  break;
267  case PRIO_PGRP:
268  if (who)
269  pgrp = find_vpid(who);
270  else
271  pgrp = task_pgrp(current);
272  do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
273  niceval = 20 - task_nice(p);
274  if (niceval > retval)
275  retval = niceval;
277  break;
278  case PRIO_USER:
279  uid = make_kuid(cred->user_ns, who);
280  user = cred->user;
281  if (!who)
282  uid = cred->uid;
283  else if (!uid_eq(uid, cred->uid) &&
284  !(user = find_user(uid)))
285  goto out_unlock; /* No processes for this user */
286 
287  do_each_thread(g, p) {
288  if (uid_eq(task_uid(p), uid)) {
289  niceval = 20 - task_nice(p);
290  if (niceval > retval)
291  retval = niceval;
292  }
293  } while_each_thread(g, p);
294  if (!uid_eq(uid, cred->uid))
295  free_uid(user); /* for find_user() */
296  break;
297  }
298 out_unlock:
300  rcu_read_unlock();
301 
302  return retval;
303 }
304 
314 {
315  kmsg_dump(KMSG_DUMP_EMERG);
317 }
319 
321 {
322  blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
324  usermodehelper_disable();
325  device_shutdown();
327 }
328 
340 {
341  return blocking_notifier_chain_register(&reboot_notifier_list, nb);
342 }
344 
355 {
356  return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
357 }
359 
368 void kernel_restart(char *cmd)
369 {
371  disable_nonboot_cpus();
372  if (!cmd)
373  printk(KERN_EMERG "Restarting system.\n");
374  else
375  printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
376  kmsg_dump(KMSG_DUMP_RESTART);
377  machine_restart(cmd);
378 }
380 
381 static void kernel_shutdown_prepare(enum system_states state)
382 {
383  blocking_notifier_call_chain(&reboot_notifier_list,
384  (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
386  usermodehelper_disable();
387  device_shutdown();
388 }
394 void kernel_halt(void)
395 {
396  kernel_shutdown_prepare(SYSTEM_HALT);
398  printk(KERN_EMERG "System halted.\n");
399  kmsg_dump(KMSG_DUMP_HALT);
400  machine_halt();
401 }
402 
404 
411 {
412  kernel_shutdown_prepare(SYSTEM_POWER_OFF);
415  disable_nonboot_cpus();
417  printk(KERN_EMERG "Power down.\n");
418  kmsg_dump(KMSG_DUMP_POWEROFF);
420 }
422 
423 static DEFINE_MUTEX(reboot_mutex);
424 
425 /*
426  * Reboot system call: for obvious reasons only root may call it,
427  * and even root needs to set up some magic numbers in the registers
428  * so that some mistake won't make this reboot the whole machine.
429  * You can also set the meaning of the ctrl-alt-del-key here.
430  *
431  * reboot doesn't sync: do that yourself before calling this.
432  */
433 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
434  void __user *, arg)
435 {
436  char buffer[256];
437  int ret = 0;
438 
439  /* We only trust the superuser with rebooting the system. */
440  if (!capable(CAP_SYS_BOOT))
441  return -EPERM;
442 
443  /* For safety, we require "magic" arguments. */
444  if (magic1 != LINUX_REBOOT_MAGIC1 ||
449  return -EINVAL;
450 
451  /*
452  * If pid namespaces are enabled and the current task is in a child
453  * pid_namespace, the command is handled by reboot_pid_ns() which will
454  * call do_exit().
455  */
457  if (ret)
458  return ret;
459 
460  /* Instead of trying to make the power_off code look like
461  * halt when pm_power_off is not set do it the easy way.
462  */
465 
466  mutex_lock(&reboot_mutex);
467  switch (cmd) {
470  break;
471 
473  C_A_D = 1;
474  break;
475 
477  C_A_D = 0;
478  break;
479 
481  kernel_halt();
482  do_exit(0);
483  panic("cannot halt");
484 
487  do_exit(0);
488  break;
489 
491  if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
492  ret = -EFAULT;
493  break;
494  }
495  buffer[sizeof(buffer) - 1] = '\0';
496 
497  kernel_restart(buffer);
498  break;
499 
500 #ifdef CONFIG_KEXEC
502  ret = kernel_kexec();
503  break;
504 #endif
505 
506 #ifdef CONFIG_HIBERNATION
508  ret = hibernate();
509  break;
510 #endif
511 
512  default:
513  ret = -EINVAL;
514  break;
515  }
516  mutex_unlock(&reboot_mutex);
517  return ret;
518 }
519 
520 static void deferred_cad(struct work_struct *dummy)
521 {
523 }
524 
525 /*
526  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
527  * As it's called within an interrupt, it may NOT sync: the only choice
528  * is whether to reboot at once, or just ignore the ctrl-alt-del.
529  */
530 void ctrl_alt_del(void)
531 {
532  static DECLARE_WORK(cad_work, deferred_cad);
533 
534  if (C_A_D)
535  schedule_work(&cad_work);
536  else
537  kill_cad_pid(SIGINT, 1);
538 }
539 
540 /*
541  * Unprivileged users may change the real gid to the effective gid
542  * or vice versa. (BSD-style)
543  *
544  * If you set the real gid at all, or set the effective gid to a value not
545  * equal to the real gid, then the saved gid is set to the new effective gid.
546  *
547  * This makes it possible for a setgid program to completely drop its
548  * privileges, which is often a useful assertion to make when you are doing
549  * a security audit over a program.
550  *
551  * The general idea is that a program which uses just setregid() will be
552  * 100% compatible with BSD. A program which uses just setgid() will be
553  * 100% compatible with POSIX with saved IDs.
554  *
555  * SMP: There are not races, the GIDs are checked only by filesystem
556  * operations (as far as semantic preservation is concerned).
557  */
558 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
559 {
560  struct user_namespace *ns = current_user_ns();
561  const struct cred *old;
562  struct cred *new;
563  int retval;
564  kgid_t krgid, kegid;
565 
566  krgid = make_kgid(ns, rgid);
567  kegid = make_kgid(ns, egid);
568 
569  if ((rgid != (gid_t) -1) && !gid_valid(krgid))
570  return -EINVAL;
571  if ((egid != (gid_t) -1) && !gid_valid(kegid))
572  return -EINVAL;
573 
574  new = prepare_creds();
575  if (!new)
576  return -ENOMEM;
577  old = current_cred();
578 
579  retval = -EPERM;
580  if (rgid != (gid_t) -1) {
581  if (gid_eq(old->gid, krgid) ||
582  gid_eq(old->egid, krgid) ||
584  new->gid = krgid;
585  else
586  goto error;
587  }
588  if (egid != (gid_t) -1) {
589  if (gid_eq(old->gid, kegid) ||
590  gid_eq(old->egid, kegid) ||
591  gid_eq(old->sgid, kegid) ||
593  new->egid = kegid;
594  else
595  goto error;
596  }
597 
598  if (rgid != (gid_t) -1 ||
599  (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
600  new->sgid = new->egid;
601  new->fsgid = new->egid;
602 
603  return commit_creds(new);
604 
605 error:
606  abort_creds(new);
607  return retval;
608 }
609 
610 /*
611  * setgid() is implemented like SysV w/ SAVED_IDS
612  *
613  * SMP: Same implicit races as above.
614  */
616 {
617  struct user_namespace *ns = current_user_ns();
618  const struct cred *old;
619  struct cred *new;
620  int retval;
621  kgid_t kgid;
622 
623  kgid = make_kgid(ns, gid);
624  if (!gid_valid(kgid))
625  return -EINVAL;
626 
627  new = prepare_creds();
628  if (!new)
629  return -ENOMEM;
630  old = current_cred();
631 
632  retval = -EPERM;
634  new->gid = new->egid = new->sgid = new->fsgid = kgid;
635  else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
636  new->egid = new->fsgid = kgid;
637  else
638  goto error;
639 
640  return commit_creds(new);
641 
642 error:
643  abort_creds(new);
644  return retval;
645 }
646 
647 /*
648  * change the user struct in a credentials set to match the new UID
649  */
650 static int set_user(struct cred *new)
651 {
652  struct user_struct *new_user;
653 
654  new_user = alloc_uid(new->uid);
655  if (!new_user)
656  return -EAGAIN;
657 
658  /*
659  * We don't fail in case of NPROC limit excess here because too many
660  * poorly written programs don't check set*uid() return code, assuming
661  * it never fails if called by root. We may still enforce NPROC limit
662  * for programs doing set*uid()+execve() by harmlessly deferring the
663  * failure to the execve() stage.
664  */
665  if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
666  new_user != INIT_USER)
667  current->flags |= PF_NPROC_EXCEEDED;
668  else
669  current->flags &= ~PF_NPROC_EXCEEDED;
670 
671  free_uid(new->user);
672  new->user = new_user;
673  return 0;
674 }
675 
676 /*
677  * Unprivileged users may change the real uid to the effective uid
678  * or vice versa. (BSD-style)
679  *
680  * If you set the real uid at all, or set the effective uid to a value not
681  * equal to the real uid, then the saved uid is set to the new effective uid.
682  *
683  * This makes it possible for a setuid program to completely drop its
684  * privileges, which is often a useful assertion to make when you are doing
685  * a security audit over a program.
686  *
687  * The general idea is that a program which uses just setreuid() will be
688  * 100% compatible with BSD. A program which uses just setuid() will be
689  * 100% compatible with POSIX with saved IDs.
690  */
691 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
692 {
693  struct user_namespace *ns = current_user_ns();
694  const struct cred *old;
695  struct cred *new;
696  int retval;
697  kuid_t kruid, keuid;
698 
699  kruid = make_kuid(ns, ruid);
700  keuid = make_kuid(ns, euid);
701 
702  if ((ruid != (uid_t) -1) && !uid_valid(kruid))
703  return -EINVAL;
704  if ((euid != (uid_t) -1) && !uid_valid(keuid))
705  return -EINVAL;
706 
707  new = prepare_creds();
708  if (!new)
709  return -ENOMEM;
710  old = current_cred();
711 
712  retval = -EPERM;
713  if (ruid != (uid_t) -1) {
714  new->uid = kruid;
715  if (!uid_eq(old->uid, kruid) &&
716  !uid_eq(old->euid, kruid) &&
718  goto error;
719  }
720 
721  if (euid != (uid_t) -1) {
722  new->euid = keuid;
723  if (!uid_eq(old->uid, keuid) &&
724  !uid_eq(old->euid, keuid) &&
725  !uid_eq(old->suid, keuid) &&
727  goto error;
728  }
729 
730  if (!uid_eq(new->uid, old->uid)) {
731  retval = set_user(new);
732  if (retval < 0)
733  goto error;
734  }
735  if (ruid != (uid_t) -1 ||
736  (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
737  new->suid = new->euid;
738  new->fsuid = new->euid;
739 
740  retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
741  if (retval < 0)
742  goto error;
743 
744  return commit_creds(new);
745 
746 error:
747  abort_creds(new);
748  return retval;
749 }
750 
751 /*
752  * setuid() is implemented like SysV with SAVED_IDS
753  *
754  * Note that SAVED_ID's is deficient in that a setuid root program
755  * like sendmail, for example, cannot set its uid to be a normal
756  * user and then switch back, because if you're root, setuid() sets
757  * the saved uid too. If you don't like this, blame the bright people
758  * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
759  * will allow a root program to temporarily drop privileges and be able to
760  * regain them by swapping the real and effective uid.
761  */
763 {
764  struct user_namespace *ns = current_user_ns();
765  const struct cred *old;
766  struct cred *new;
767  int retval;
768  kuid_t kuid;
769 
770  kuid = make_kuid(ns, uid);
771  if (!uid_valid(kuid))
772  return -EINVAL;
773 
774  new = prepare_creds();
775  if (!new)
776  return -ENOMEM;
777  old = current_cred();
778 
779  retval = -EPERM;
780  if (nsown_capable(CAP_SETUID)) {
781  new->suid = new->uid = kuid;
782  if (!uid_eq(kuid, old->uid)) {
783  retval = set_user(new);
784  if (retval < 0)
785  goto error;
786  }
787  } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
788  goto error;
789  }
790 
791  new->fsuid = new->euid = kuid;
792 
793  retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
794  if (retval < 0)
795  goto error;
796 
797  return commit_creds(new);
798 
799 error:
800  abort_creds(new);
801  return retval;
802 }
803 
804 
805 /*
806  * This function implements a generic ability to update ruid, euid,
807  * and suid. This allows you to implement the 4.4 compatible seteuid().
808  */
809 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
810 {
811  struct user_namespace *ns = current_user_ns();
812  const struct cred *old;
813  struct cred *new;
814  int retval;
815  kuid_t kruid, keuid, ksuid;
816 
817  kruid = make_kuid(ns, ruid);
818  keuid = make_kuid(ns, euid);
819  ksuid = make_kuid(ns, suid);
820 
821  if ((ruid != (uid_t) -1) && !uid_valid(kruid))
822  return -EINVAL;
823 
824  if ((euid != (uid_t) -1) && !uid_valid(keuid))
825  return -EINVAL;
826 
827  if ((suid != (uid_t) -1) && !uid_valid(ksuid))
828  return -EINVAL;
829 
830  new = prepare_creds();
831  if (!new)
832  return -ENOMEM;
833 
834  old = current_cred();
835 
836  retval = -EPERM;
837  if (!nsown_capable(CAP_SETUID)) {
838  if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
839  !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
840  goto error;
841  if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
842  !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
843  goto error;
844  if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
845  !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
846  goto error;
847  }
848 
849  if (ruid != (uid_t) -1) {
850  new->uid = kruid;
851  if (!uid_eq(kruid, old->uid)) {
852  retval = set_user(new);
853  if (retval < 0)
854  goto error;
855  }
856  }
857  if (euid != (uid_t) -1)
858  new->euid = keuid;
859  if (suid != (uid_t) -1)
860  new->suid = ksuid;
861  new->fsuid = new->euid;
862 
863  retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
864  if (retval < 0)
865  goto error;
866 
867  return commit_creds(new);
868 
869 error:
870  abort_creds(new);
871  return retval;
872 }
873 
874 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
875 {
876  const struct cred *cred = current_cred();
877  int retval;
878  uid_t ruid, euid, suid;
879 
880  ruid = from_kuid_munged(cred->user_ns, cred->uid);
881  euid = from_kuid_munged(cred->user_ns, cred->euid);
882  suid = from_kuid_munged(cred->user_ns, cred->suid);
883 
884  if (!(retval = put_user(ruid, ruidp)) &&
885  !(retval = put_user(euid, euidp)))
886  retval = put_user(suid, suidp);
887 
888  return retval;
889 }
890 
891 /*
892  * Same as above, but for rgid, egid, sgid.
893  */
895 {
896  struct user_namespace *ns = current_user_ns();
897  const struct cred *old;
898  struct cred *new;
899  int retval;
900  kgid_t krgid, kegid, ksgid;
901 
902  krgid = make_kgid(ns, rgid);
903  kegid = make_kgid(ns, egid);
904  ksgid = make_kgid(ns, sgid);
905 
906  if ((rgid != (gid_t) -1) && !gid_valid(krgid))
907  return -EINVAL;
908  if ((egid != (gid_t) -1) && !gid_valid(kegid))
909  return -EINVAL;
910  if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
911  return -EINVAL;
912 
913  new = prepare_creds();
914  if (!new)
915  return -ENOMEM;
916  old = current_cred();
917 
918  retval = -EPERM;
919  if (!nsown_capable(CAP_SETGID)) {
920  if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
921  !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
922  goto error;
923  if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
924  !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
925  goto error;
926  if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
927  !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
928  goto error;
929  }
930 
931  if (rgid != (gid_t) -1)
932  new->gid = krgid;
933  if (egid != (gid_t) -1)
934  new->egid = kegid;
935  if (sgid != (gid_t) -1)
936  new->sgid = ksgid;
937  new->fsgid = new->egid;
938 
939  return commit_creds(new);
940 
941 error:
942  abort_creds(new);
943  return retval;
944 }
945 
946 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
947 {
948  const struct cred *cred = current_cred();
949  int retval;
950  gid_t rgid, egid, sgid;
951 
952  rgid = from_kgid_munged(cred->user_ns, cred->gid);
953  egid = from_kgid_munged(cred->user_ns, cred->egid);
954  sgid = from_kgid_munged(cred->user_ns, cred->sgid);
955 
956  if (!(retval = put_user(rgid, rgidp)) &&
957  !(retval = put_user(egid, egidp)))
958  retval = put_user(sgid, sgidp);
959 
960  return retval;
961 }
962 
963 
964 /*
965  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
966  * is used for "access()" and for the NFS daemon (letting nfsd stay at
967  * whatever uid it wants to). It normally shadows "euid", except when
968  * explicitly set by setfsuid() or for access..
969  */
971 {
972  const struct cred *old;
973  struct cred *new;
974  uid_t old_fsuid;
975  kuid_t kuid;
976 
977  old = current_cred();
978  old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
979 
980  kuid = make_kuid(old->user_ns, uid);
981  if (!uid_valid(kuid))
982  return old_fsuid;
983 
984  new = prepare_creds();
985  if (!new)
986  return old_fsuid;
987 
988  if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
989  uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
991  if (!uid_eq(kuid, old->fsuid)) {
992  new->fsuid = kuid;
993  if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
994  goto change_okay;
995  }
996  }
997 
998  abort_creds(new);
999  return old_fsuid;
1000 
1001 change_okay:
1002  commit_creds(new);
1003  return old_fsuid;
1004 }
1005 
1006 /*
1007  * Samma pÃ¥ svenska..
1008  */
1010 {
1011  const struct cred *old;
1012  struct cred *new;
1013  gid_t old_fsgid;
1014  kgid_t kgid;
1015 
1016  old = current_cred();
1017  old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
1018 
1019  kgid = make_kgid(old->user_ns, gid);
1020  if (!gid_valid(kgid))
1021  return old_fsgid;
1022 
1023  new = prepare_creds();
1024  if (!new)
1025  return old_fsgid;
1026 
1027  if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
1028  gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
1030  if (!gid_eq(kgid, old->fsgid)) {
1031  new->fsgid = kgid;
1032  goto change_okay;
1033  }
1034  }
1035 
1036  abort_creds(new);
1037  return old_fsgid;
1038 
1039 change_okay:
1040  commit_creds(new);
1041  return old_fsgid;
1042 }
1043 
1044 void do_sys_times(struct tms *tms)
1045 {
1046  cputime_t tgutime, tgstime, cutime, cstime;
1047 
1048  spin_lock_irq(&current->sighand->siglock);
1049  thread_group_times(current, &tgutime, &tgstime);
1050  cutime = current->signal->cutime;
1051  cstime = current->signal->cstime;
1052  spin_unlock_irq(&current->sighand->siglock);
1053  tms->tms_utime = cputime_to_clock_t(tgutime);
1054  tms->tms_stime = cputime_to_clock_t(tgstime);
1055  tms->tms_cutime = cputime_to_clock_t(cutime);
1056  tms->tms_cstime = cputime_to_clock_t(cstime);
1057 }
1058 
1059 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1060 {
1061  if (tbuf) {
1062  struct tms tmp;
1063 
1064  do_sys_times(&tmp);
1065  if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1066  return -EFAULT;
1067  }
1069  return (long) jiffies_64_to_clock_t(get_jiffies_64());
1070 }
1071 
1072 /*
1073  * This needs some heavy checking ...
1074  * I just haven't the stomach for it. I also don't fully
1075  * understand sessions/pgrp etc. Let somebody who does explain it.
1076  *
1077  * OK, I think I have the protection semantics right.... this is really
1078  * only important on a multi-user system anyway, to make sure one user
1079  * can't send a signal to a process owned by another. -TYT, 12/12/91
1080  *
1081  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1082  * LBT 04.03.94
1083  */
1085 {
1086  struct task_struct *p;
1087  struct task_struct *group_leader = current->group_leader;
1088  struct pid *pgrp;
1089  int err;
1090 
1091  if (!pid)
1092  pid = task_pid_vnr(group_leader);
1093  if (!pgid)
1094  pgid = pid;
1095  if (pgid < 0)
1096  return -EINVAL;
1097  rcu_read_lock();
1098 
1099  /* From this point forward we keep holding onto the tasklist lock
1100  * so that our parent does not change from under us. -DaveM
1101  */
1103 
1104  err = -ESRCH;
1105  p = find_task_by_vpid(pid);
1106  if (!p)
1107  goto out;
1108 
1109  err = -EINVAL;
1110  if (!thread_group_leader(p))
1111  goto out;
1112 
1113  if (same_thread_group(p->real_parent, group_leader)) {
1114  err = -EPERM;
1115  if (task_session(p) != task_session(group_leader))
1116  goto out;
1117  err = -EACCES;
1118  if (p->did_exec)
1119  goto out;
1120  } else {
1121  err = -ESRCH;
1122  if (p != group_leader)
1123  goto out;
1124  }
1125 
1126  err = -EPERM;
1127  if (p->signal->leader)
1128  goto out;
1129 
1130  pgrp = task_pid(p);
1131  if (pgid != pid) {
1132  struct task_struct *g;
1133 
1134  pgrp = find_vpid(pgid);
1135  g = pid_task(pgrp, PIDTYPE_PGID);
1136  if (!g || task_session(g) != task_session(group_leader))
1137  goto out;
1138  }
1139 
1140  err = security_task_setpgid(p, pgid);
1141  if (err)
1142  goto out;
1143 
1144  if (task_pgrp(p) != pgrp)
1145  change_pid(p, PIDTYPE_PGID, pgrp);
1146 
1147  err = 0;
1148 out:
1149  /* All paths lead to here, thus we are safe. -DaveM */
1151  rcu_read_unlock();
1152  return err;
1153 }
1154 
1156 {
1157  struct task_struct *p;
1158  struct pid *grp;
1159  int retval;
1160 
1161  rcu_read_lock();
1162  if (!pid)
1163  grp = task_pgrp(current);
1164  else {
1165  retval = -ESRCH;
1166  p = find_task_by_vpid(pid);
1167  if (!p)
1168  goto out;
1169  grp = task_pgrp(p);
1170  if (!grp)
1171  goto out;
1172 
1173  retval = security_task_getpgid(p);
1174  if (retval)
1175  goto out;
1176  }
1177  retval = pid_vnr(grp);
1178 out:
1179  rcu_read_unlock();
1180  return retval;
1181 }
1182 
1183 #ifdef __ARCH_WANT_SYS_GETPGRP
1184 
1185 SYSCALL_DEFINE0(getpgrp)
1186 {
1187  return sys_getpgid(0);
1188 }
1189 
1190 #endif
1191 
1193 {
1194  struct task_struct *p;
1195  struct pid *sid;
1196  int retval;
1197 
1198  rcu_read_lock();
1199  if (!pid)
1200  sid = task_session(current);
1201  else {
1202  retval = -ESRCH;
1203  p = find_task_by_vpid(pid);
1204  if (!p)
1205  goto out;
1206  sid = task_session(p);
1207  if (!sid)
1208  goto out;
1209 
1210  retval = security_task_getsid(p);
1211  if (retval)
1212  goto out;
1213  }
1214  retval = pid_vnr(sid);
1215 out:
1216  rcu_read_unlock();
1217  return retval;
1218 }
1219 
1221 {
1222  struct task_struct *group_leader = current->group_leader;
1223  struct pid *sid = task_pid(group_leader);
1224  pid_t session = pid_vnr(sid);
1225  int err = -EPERM;
1226 
1228  /* Fail if I am already a session leader */
1229  if (group_leader->signal->leader)
1230  goto out;
1231 
1232  /* Fail if a process group id already exists that equals the
1233  * proposed session id.
1234  */
1235  if (pid_task(sid, PIDTYPE_PGID))
1236  goto out;
1237 
1238  group_leader->signal->leader = 1;
1239  __set_special_pids(sid);
1240 
1241  proc_clear_tty(group_leader);
1242 
1243  err = session;
1244 out:
1246  if (err > 0) {
1247  proc_sid_connector(group_leader);
1248  sched_autogroup_create_attach(group_leader);
1249  }
1250  return err;
1251 }
1252 
1253 DECLARE_RWSEM(uts_sem);
1254 
1255 #ifdef COMPAT_UTS_MACHINE
1256 #define override_architecture(name) \
1257  (personality(current->personality) == PER_LINUX32 && \
1258  copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1259  sizeof(COMPAT_UTS_MACHINE)))
1260 #else
1261 #define override_architecture(name) 0
1262 #endif
1263 
1264 /*
1265  * Work around broken programs that cannot handle "Linux 3.0".
1266  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1267  */
1268 static int override_release(char __user *release, size_t len)
1269 {
1270  int ret = 0;
1271 
1272  if (current->personality & UNAME26) {
1273  const char *rest = UTS_RELEASE;
1274  char buf[65] = { 0 };
1275  int ndots = 0;
1276  unsigned v;
1277  size_t copy;
1278 
1279  while (*rest) {
1280  if (*rest == '.' && ++ndots >= 3)
1281  break;
1282  if (!isdigit(*rest) && *rest != '.')
1283  break;
1284  rest++;
1285  }
1286  v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1287  copy = clamp_t(size_t, len, 1, sizeof(buf));
1288  copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1289  ret = copy_to_user(release, buf, copy + 1);
1290  }
1291  return ret;
1292 }
1293 
1294 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1295 {
1296  int errno = 0;
1297 
1298  down_read(&uts_sem);
1299  if (copy_to_user(name, utsname(), sizeof *name))
1300  errno = -EFAULT;
1301  up_read(&uts_sem);
1302 
1303  if (!errno && override_release(name->release, sizeof(name->release)))
1304  errno = -EFAULT;
1305  if (!errno && override_architecture(name))
1306  errno = -EFAULT;
1307  return errno;
1308 }
1309 
1310 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1311 /*
1312  * Old cruft
1313  */
1314 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1315 {
1316  int error = 0;
1317 
1318  if (!name)
1319  return -EFAULT;
1320 
1321  down_read(&uts_sem);
1322  if (copy_to_user(name, utsname(), sizeof(*name)))
1323  error = -EFAULT;
1324  up_read(&uts_sem);
1325 
1326  if (!error && override_release(name->release, sizeof(name->release)))
1327  error = -EFAULT;
1328  if (!error && override_architecture(name))
1329  error = -EFAULT;
1330  return error;
1331 }
1332 
1333 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1334 {
1335  int error;
1336 
1337  if (!name)
1338  return -EFAULT;
1339  if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1340  return -EFAULT;
1341 
1342  down_read(&uts_sem);
1343  error = __copy_to_user(&name->sysname, &utsname()->sysname,
1344  __OLD_UTS_LEN);
1345  error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1346  error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1347  __OLD_UTS_LEN);
1348  error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1349  error |= __copy_to_user(&name->release, &utsname()->release,
1350  __OLD_UTS_LEN);
1351  error |= __put_user(0, name->release + __OLD_UTS_LEN);
1352  error |= __copy_to_user(&name->version, &utsname()->version,
1353  __OLD_UTS_LEN);
1354  error |= __put_user(0, name->version + __OLD_UTS_LEN);
1355  error |= __copy_to_user(&name->machine, &utsname()->machine,
1356  __OLD_UTS_LEN);
1357  error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1358  up_read(&uts_sem);
1359 
1360  if (!error && override_architecture(name))
1361  error = -EFAULT;
1362  if (!error && override_release(name->release, sizeof(name->release)))
1363  error = -EFAULT;
1364  return error ? -EFAULT : 0;
1365 }
1366 #endif
1367 
1368 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1369 {
1370  int errno;
1371  char tmp[__NEW_UTS_LEN];
1372 
1373  if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1374  return -EPERM;
1375 
1376  if (len < 0 || len > __NEW_UTS_LEN)
1377  return -EINVAL;
1378  down_write(&uts_sem);
1379  errno = -EFAULT;
1380  if (!copy_from_user(tmp, name, len)) {
1381  struct new_utsname *u = utsname();
1382 
1383  memcpy(u->nodename, tmp, len);
1384  memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1385  errno = 0;
1386  uts_proc_notify(UTS_PROC_HOSTNAME);
1387  }
1388  up_write(&uts_sem);
1389  return errno;
1390 }
1391 
1392 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1393 
1394 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1395 {
1396  int i, errno;
1397  struct new_utsname *u;
1398 
1399  if (len < 0)
1400  return -EINVAL;
1401  down_read(&uts_sem);
1402  u = utsname();
1403  i = 1 + strlen(u->nodename);
1404  if (i > len)
1405  i = len;
1406  errno = 0;
1407  if (copy_to_user(name, u->nodename, i))
1408  errno = -EFAULT;
1409  up_read(&uts_sem);
1410  return errno;
1411 }
1412 
1413 #endif
1414 
1415 /*
1416  * Only setdomainname; getdomainname can be implemented by calling
1417  * uname()
1418  */
1419 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1420 {
1421  int errno;
1422  char tmp[__NEW_UTS_LEN];
1423 
1424  if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1425  return -EPERM;
1426  if (len < 0 || len > __NEW_UTS_LEN)
1427  return -EINVAL;
1428 
1429  down_write(&uts_sem);
1430  errno = -EFAULT;
1431  if (!copy_from_user(tmp, name, len)) {
1432  struct new_utsname *u = utsname();
1433 
1434  memcpy(u->domainname, tmp, len);
1435  memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1436  errno = 0;
1437  uts_proc_notify(UTS_PROC_DOMAINNAME);
1438  }
1439  up_write(&uts_sem);
1440  return errno;
1441 }
1442 
1443 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1444 {
1445  struct rlimit value;
1446  int ret;
1447 
1448  ret = do_prlimit(current, resource, NULL, &value);
1449  if (!ret)
1450  ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1451 
1452  return ret;
1453 }
1454 
1455 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1456 
1457 /*
1458  * Back compatibility for getrlimit. Needed for some apps.
1459  */
1460 
1461 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1462  struct rlimit __user *, rlim)
1463 {
1464  struct rlimit x;
1465  if (resource >= RLIM_NLIMITS)
1466  return -EINVAL;
1467 
1468  task_lock(current->group_leader);
1469  x = current->signal->rlim[resource];
1470  task_unlock(current->group_leader);
1471  if (x.rlim_cur > 0x7FFFFFFF)
1472  x.rlim_cur = 0x7FFFFFFF;
1473  if (x.rlim_max > 0x7FFFFFFF)
1474  x.rlim_max = 0x7FFFFFFF;
1475  return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1476 }
1477 
1478 #endif
1479 
1480 static inline bool rlim64_is_infinity(__u64 rlim64)
1481 {
1482 #if BITS_PER_LONG < 64
1483  return rlim64 >= ULONG_MAX;
1484 #else
1485  return rlim64 == RLIM64_INFINITY;
1486 #endif
1487 }
1488 
1489 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1490 {
1491  if (rlim->rlim_cur == RLIM_INFINITY)
1492  rlim64->rlim_cur = RLIM64_INFINITY;
1493  else
1494  rlim64->rlim_cur = rlim->rlim_cur;
1495  if (rlim->rlim_max == RLIM_INFINITY)
1496  rlim64->rlim_max = RLIM64_INFINITY;
1497  else
1498  rlim64->rlim_max = rlim->rlim_max;
1499 }
1500 
1501 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1502 {
1503  if (rlim64_is_infinity(rlim64->rlim_cur))
1504  rlim->rlim_cur = RLIM_INFINITY;
1505  else
1506  rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1507  if (rlim64_is_infinity(rlim64->rlim_max))
1508  rlim->rlim_max = RLIM_INFINITY;
1509  else
1510  rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1511 }
1512 
1513 /* make sure you are allowed to change @tsk limits before calling this */
1514 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1515  struct rlimit *new_rlim, struct rlimit *old_rlim)
1516 {
1517  struct rlimit *rlim;
1518  int retval = 0;
1519 
1520  if (resource >= RLIM_NLIMITS)
1521  return -EINVAL;
1522  if (new_rlim) {
1523  if (new_rlim->rlim_cur > new_rlim->rlim_max)
1524  return -EINVAL;
1525  if (resource == RLIMIT_NOFILE &&
1526  new_rlim->rlim_max > sysctl_nr_open)
1527  return -EPERM;
1528  }
1529 
1530  /* protect tsk->signal and tsk->sighand from disappearing */
1532  if (!tsk->sighand) {
1533  retval = -ESRCH;
1534  goto out;
1535  }
1536 
1537  rlim = tsk->signal->rlim + resource;
1538  task_lock(tsk->group_leader);
1539  if (new_rlim) {
1540  /* Keep the capable check against init_user_ns until
1541  cgroups can contain all limits */
1542  if (new_rlim->rlim_max > rlim->rlim_max &&
1544  retval = -EPERM;
1545  if (!retval)
1546  retval = security_task_setrlimit(tsk->group_leader,
1547  resource, new_rlim);
1548  if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1549  /*
1550  * The caller is asking for an immediate RLIMIT_CPU
1551  * expiry. But we use the zero value to mean "it was
1552  * never set". So let's cheat and make it one second
1553  * instead
1554  */
1555  new_rlim->rlim_cur = 1;
1556  }
1557  }
1558  if (!retval) {
1559  if (old_rlim)
1560  *old_rlim = *rlim;
1561  if (new_rlim)
1562  *rlim = *new_rlim;
1563  }
1564  task_unlock(tsk->group_leader);
1565 
1566  /*
1567  * RLIMIT_CPU handling. Note that the kernel fails to return an error
1568  * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1569  * very long-standing error, and fixing it now risks breakage of
1570  * applications, so we live with it
1571  */
1572  if (!retval && new_rlim && resource == RLIMIT_CPU &&
1573  new_rlim->rlim_cur != RLIM_INFINITY)
1574  update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1575 out:
1577  return retval;
1578 }
1579 
1580 /* rcu lock must be held */
1581 static int check_prlimit_permission(struct task_struct *task)
1582 {
1583  const struct cred *cred = current_cred(), *tcred;
1584 
1585  if (current == task)
1586  return 0;
1587 
1588  tcred = __task_cred(task);
1589  if (uid_eq(cred->uid, tcred->euid) &&
1590  uid_eq(cred->uid, tcred->suid) &&
1591  uid_eq(cred->uid, tcred->uid) &&
1592  gid_eq(cred->gid, tcred->egid) &&
1593  gid_eq(cred->gid, tcred->sgid) &&
1594  gid_eq(cred->gid, tcred->gid))
1595  return 0;
1596  if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1597  return 0;
1598 
1599  return -EPERM;
1600 }
1601 
1602 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1603  const struct rlimit64 __user *, new_rlim,
1604  struct rlimit64 __user *, old_rlim)
1605 {
1606  struct rlimit64 old64, new64;
1607  struct rlimit old, new;
1608  struct task_struct *tsk;
1609  int ret;
1610 
1611  if (new_rlim) {
1612  if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1613  return -EFAULT;
1614  rlim64_to_rlim(&new64, &new);
1615  }
1616 
1617  rcu_read_lock();
1618  tsk = pid ? find_task_by_vpid(pid) : current;
1619  if (!tsk) {
1620  rcu_read_unlock();
1621  return -ESRCH;
1622  }
1623  ret = check_prlimit_permission(tsk);
1624  if (ret) {
1625  rcu_read_unlock();
1626  return ret;
1627  }
1628  get_task_struct(tsk);
1629  rcu_read_unlock();
1630 
1631  ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1632  old_rlim ? &old : NULL);
1633 
1634  if (!ret && old_rlim) {
1635  rlim_to_rlim64(&old, &old64);
1636  if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1637  ret = -EFAULT;
1638  }
1639 
1640  put_task_struct(tsk);
1641  return ret;
1642 }
1643 
1644 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1645 {
1646  struct rlimit new_rlim;
1647 
1648  if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1649  return -EFAULT;
1650  return do_prlimit(current, resource, &new_rlim, NULL);
1651 }
1652 
1653 /*
1654  * It would make sense to put struct rusage in the task_struct,
1655  * except that would make the task_struct be *really big*. After
1656  * task_struct gets moved into malloc'ed memory, it would
1657  * make sense to do this. It will make moving the rest of the information
1658  * a lot simpler! (Which we're not doing right now because we're not
1659  * measuring them yet).
1660  *
1661  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1662  * races with threads incrementing their own counters. But since word
1663  * reads are atomic, we either get new values or old values and we don't
1664  * care which for the sums. We always take the siglock to protect reading
1665  * the c* fields from p->signal from races with exit.c updating those
1666  * fields when reaping, so a sample either gets all the additions of a
1667  * given child after it's reaped, or none so this sample is before reaping.
1668  *
1669  * Locking:
1670  * We need to take the siglock for CHILDEREN, SELF and BOTH
1671  * for the cases current multithreaded, non-current single threaded
1672  * non-current multithreaded. Thread traversal is now safe with
1673  * the siglock held.
1674  * Strictly speaking, we donot need to take the siglock if we are current and
1675  * single threaded, as no one else can take our signal_struct away, no one
1676  * else can reap the children to update signal->c* counters, and no one else
1677  * can race with the signal-> fields. If we do not take any lock, the
1678  * signal-> fields could be read out of order while another thread was just
1679  * exiting. So we should place a read memory barrier when we avoid the lock.
1680  * On the writer side, write memory barrier is implied in __exit_signal
1681  * as __exit_signal releases the siglock spinlock after updating the signal->
1682  * fields. But we don't do this yet to keep things simple.
1683  *
1684  */
1685 
1686 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1687 {
1688  r->ru_nvcsw += t->nvcsw;
1689  r->ru_nivcsw += t->nivcsw;
1690  r->ru_minflt += t->min_flt;
1691  r->ru_majflt += t->maj_flt;
1692  r->ru_inblock += task_io_get_inblock(t);
1693  r->ru_oublock += task_io_get_oublock(t);
1694 }
1695 
1696 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1697 {
1698  struct task_struct *t;
1699  unsigned long flags;
1700  cputime_t tgutime, tgstime, utime, stime;
1701  unsigned long maxrss = 0;
1702 
1703  memset((char *) r, 0, sizeof *r);
1704  utime = stime = 0;
1705 
1706  if (who == RUSAGE_THREAD) {
1707  task_times(current, &utime, &stime);
1708  accumulate_thread_rusage(p, r);
1709  maxrss = p->signal->maxrss;
1710  goto out;
1711  }
1712 
1713  if (!lock_task_sighand(p, &flags))
1714  return;
1715 
1716  switch (who) {
1717  case RUSAGE_BOTH:
1718  case RUSAGE_CHILDREN:
1719  utime = p->signal->cutime;
1720  stime = p->signal->cstime;
1721  r->ru_nvcsw = p->signal->cnvcsw;
1722  r->ru_nivcsw = p->signal->cnivcsw;
1723  r->ru_minflt = p->signal->cmin_flt;
1724  r->ru_majflt = p->signal->cmaj_flt;
1725  r->ru_inblock = p->signal->cinblock;
1726  r->ru_oublock = p->signal->coublock;
1727  maxrss = p->signal->cmaxrss;
1728 
1729  if (who == RUSAGE_CHILDREN)
1730  break;
1731 
1732  case RUSAGE_SELF:
1733  thread_group_times(p, &tgutime, &tgstime);
1734  utime += tgutime;
1735  stime += tgstime;
1736  r->ru_nvcsw += p->signal->nvcsw;
1737  r->ru_nivcsw += p->signal->nivcsw;
1738  r->ru_minflt += p->signal->min_flt;
1739  r->ru_majflt += p->signal->maj_flt;
1740  r->ru_inblock += p->signal->inblock;
1741  r->ru_oublock += p->signal->oublock;
1742  if (maxrss < p->signal->maxrss)
1743  maxrss = p->signal->maxrss;
1744  t = p;
1745  do {
1746  accumulate_thread_rusage(t, r);
1747  t = next_thread(t);
1748  } while (t != p);
1749  break;
1750 
1751  default:
1752  BUG();
1753  }
1754  unlock_task_sighand(p, &flags);
1755 
1756 out:
1757  cputime_to_timeval(utime, &r->ru_utime);
1758  cputime_to_timeval(stime, &r->ru_stime);
1759 
1760  if (who != RUSAGE_CHILDREN) {
1761  struct mm_struct *mm = get_task_mm(p);
1762  if (mm) {
1763  setmax_mm_hiwater_rss(&maxrss, mm);
1764  mmput(mm);
1765  }
1766  }
1767  r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1768 }
1769 
1770 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1771 {
1772  struct rusage r;
1773  k_getrusage(p, who, &r);
1774  return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1775 }
1776 
1777 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1778 {
1779  if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1780  who != RUSAGE_THREAD)
1781  return -EINVAL;
1782  return getrusage(current, who, ru);
1783 }
1784 
1785 SYSCALL_DEFINE1(umask, int, mask)
1786 {
1787  mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1788  return mask;
1789 }
1790 
1791 #ifdef CONFIG_CHECKPOINT_RESTORE
1792 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1793 {
1794  struct fd exe;
1795  struct dentry *dentry;
1796  int err;
1797 
1798  exe = fdget(fd);
1799  if (!exe.file)
1800  return -EBADF;
1801 
1802  dentry = exe.file->f_path.dentry;
1803 
1804  /*
1805  * Because the original mm->exe_file points to executable file, make
1806  * sure that this one is executable as well, to avoid breaking an
1807  * overall picture.
1808  */
1809  err = -EACCES;
1810  if (!S_ISREG(dentry->d_inode->i_mode) ||
1811  exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1812  goto exit;
1813 
1814  err = inode_permission(dentry->d_inode, MAY_EXEC);
1815  if (err)
1816  goto exit;
1817 
1818  down_write(&mm->mmap_sem);
1819 
1820  /*
1821  * Forbid mm->exe_file change if old file still mapped.
1822  */
1823  err = -EBUSY;
1824  if (mm->exe_file) {
1825  struct vm_area_struct *vma;
1826 
1827  for (vma = mm->mmap; vma; vma = vma->vm_next)
1828  if (vma->vm_file &&
1829  path_equal(&vma->vm_file->f_path,
1830  &mm->exe_file->f_path))
1831  goto exit_unlock;
1832  }
1833 
1834  /*
1835  * The symlink can be changed only once, just to disallow arbitrary
1836  * transitions malicious software might bring in. This means one
1837  * could make a snapshot over all processes running and monitor
1838  * /proc/pid/exe changes to notice unusual activity if needed.
1839  */
1840  err = -EPERM;
1842  goto exit_unlock;
1843 
1844  err = 0;
1845  set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1846 exit_unlock:
1847  up_write(&mm->mmap_sem);
1848 
1849 exit:
1850  fdput(exe);
1851  return err;
1852 }
1853 
1854 static int prctl_set_mm(int opt, unsigned long addr,
1855  unsigned long arg4, unsigned long arg5)
1856 {
1857  unsigned long rlim = rlimit(RLIMIT_DATA);
1858  struct mm_struct *mm = current->mm;
1859  struct vm_area_struct *vma;
1860  int error;
1861 
1862  if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1863  return -EINVAL;
1864 
1865  if (!capable(CAP_SYS_RESOURCE))
1866  return -EPERM;
1867 
1868  if (opt == PR_SET_MM_EXE_FILE)
1869  return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1870 
1871  if (addr >= TASK_SIZE || addr < mmap_min_addr)
1872  return -EINVAL;
1873 
1874  error = -EINVAL;
1875 
1876  down_read(&mm->mmap_sem);
1877  vma = find_vma(mm, addr);
1878 
1879  switch (opt) {
1880  case PR_SET_MM_START_CODE:
1881  mm->start_code = addr;
1882  break;
1883  case PR_SET_MM_END_CODE:
1884  mm->end_code = addr;
1885  break;
1886  case PR_SET_MM_START_DATA:
1887  mm->start_data = addr;
1888  break;
1889  case PR_SET_MM_END_DATA:
1890  mm->end_data = addr;
1891  break;
1892 
1893  case PR_SET_MM_START_BRK:
1894  if (addr <= mm->end_data)
1895  goto out;
1896 
1897  if (rlim < RLIM_INFINITY &&
1898  (mm->brk - addr) +
1899  (mm->end_data - mm->start_data) > rlim)
1900  goto out;
1901 
1902  mm->start_brk = addr;
1903  break;
1904 
1905  case PR_SET_MM_BRK:
1906  if (addr <= mm->end_data)
1907  goto out;
1908 
1909  if (rlim < RLIM_INFINITY &&
1910  (addr - mm->start_brk) +
1911  (mm->end_data - mm->start_data) > rlim)
1912  goto out;
1913 
1914  mm->brk = addr;
1915  break;
1916 
1917  /*
1918  * If command line arguments and environment
1919  * are placed somewhere else on stack, we can
1920  * set them up here, ARG_START/END to setup
1921  * command line argumets and ENV_START/END
1922  * for environment.
1923  */
1924  case PR_SET_MM_START_STACK:
1925  case PR_SET_MM_ARG_START:
1926  case PR_SET_MM_ARG_END:
1927  case PR_SET_MM_ENV_START:
1928  case PR_SET_MM_ENV_END:
1929  if (!vma) {
1930  error = -EFAULT;
1931  goto out;
1932  }
1933  if (opt == PR_SET_MM_START_STACK)
1934  mm->start_stack = addr;
1935  else if (opt == PR_SET_MM_ARG_START)
1936  mm->arg_start = addr;
1937  else if (opt == PR_SET_MM_ARG_END)
1938  mm->arg_end = addr;
1939  else if (opt == PR_SET_MM_ENV_START)
1940  mm->env_start = addr;
1941  else if (opt == PR_SET_MM_ENV_END)
1942  mm->env_end = addr;
1943  break;
1944 
1945  /*
1946  * This doesn't move auxiliary vector itself
1947  * since it's pinned to mm_struct, but allow
1948  * to fill vector with new values. It's up
1949  * to a caller to provide sane values here
1950  * otherwise user space tools which use this
1951  * vector might be unhappy.
1952  */
1953  case PR_SET_MM_AUXV: {
1954  unsigned long user_auxv[AT_VECTOR_SIZE];
1955 
1956  if (arg4 > sizeof(user_auxv))
1957  goto out;
1958  up_read(&mm->mmap_sem);
1959 
1960  if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1961  return -EFAULT;
1962 
1963  /* Make sure the last entry is always AT_NULL */
1964  user_auxv[AT_VECTOR_SIZE - 2] = 0;
1965  user_auxv[AT_VECTOR_SIZE - 1] = 0;
1966 
1967  BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1968 
1969  task_lock(current);
1970  memcpy(mm->saved_auxv, user_auxv, arg4);
1971  task_unlock(current);
1972 
1973  return 0;
1974  }
1975  default:
1976  goto out;
1977  }
1978 
1979  error = 0;
1980 out:
1981  up_read(&mm->mmap_sem);
1982  return error;
1983 }
1984 
1985 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1986 {
1987  return put_user(me->clear_child_tid, tid_addr);
1988 }
1989 
1990 #else /* CONFIG_CHECKPOINT_RESTORE */
1991 static int prctl_set_mm(int opt, unsigned long addr,
1992  unsigned long arg4, unsigned long arg5)
1993 {
1994  return -EINVAL;
1995 }
1996 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1997 {
1998  return -EINVAL;
1999 }
2000 #endif
2001 
2002 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2003  unsigned long, arg4, unsigned long, arg5)
2004 {
2005  struct task_struct *me = current;
2006  unsigned char comm[sizeof(me->comm)];
2007  long error;
2008 
2009  error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2010  if (error != -ENOSYS)
2011  return error;
2012 
2013  error = 0;
2014  switch (option) {
2015  case PR_SET_PDEATHSIG:
2016  if (!valid_signal(arg2)) {
2017  error = -EINVAL;
2018  break;
2019  }
2020  me->pdeath_signal = arg2;
2021  break;
2022  case PR_GET_PDEATHSIG:
2023  error = put_user(me->pdeath_signal, (int __user *)arg2);
2024  break;
2025  case PR_GET_DUMPABLE:
2026  error = get_dumpable(me->mm);
2027  break;
2028  case PR_SET_DUMPABLE:
2029  if (arg2 < 0 || arg2 > 1) {
2030  error = -EINVAL;
2031  break;
2032  }
2033  set_dumpable(me->mm, arg2);
2034  break;
2035 
2036  case PR_SET_UNALIGN:
2037  error = SET_UNALIGN_CTL(me, arg2);
2038  break;
2039  case PR_GET_UNALIGN:
2040  error = GET_UNALIGN_CTL(me, arg2);
2041  break;
2042  case PR_SET_FPEMU:
2043  error = SET_FPEMU_CTL(me, arg2);
2044  break;
2045  case PR_GET_FPEMU:
2046  error = GET_FPEMU_CTL(me, arg2);
2047  break;
2048  case PR_SET_FPEXC:
2049  error = SET_FPEXC_CTL(me, arg2);
2050  break;
2051  case PR_GET_FPEXC:
2052  error = GET_FPEXC_CTL(me, arg2);
2053  break;
2054  case PR_GET_TIMING:
2055  error = PR_TIMING_STATISTICAL;
2056  break;
2057  case PR_SET_TIMING:
2058  if (arg2 != PR_TIMING_STATISTICAL)
2059  error = -EINVAL;
2060  break;
2061  case PR_SET_NAME:
2062  comm[sizeof(me->comm)-1] = 0;
2063  if (strncpy_from_user(comm, (char __user *)arg2,
2064  sizeof(me->comm) - 1) < 0)
2065  return -EFAULT;
2066  set_task_comm(me, comm);
2067  proc_comm_connector(me);
2068  break;
2069  case PR_GET_NAME:
2070  get_task_comm(comm, me);
2071  if (copy_to_user((char __user *)arg2, comm,
2072  sizeof(comm)))
2073  return -EFAULT;
2074  break;
2075  case PR_GET_ENDIAN:
2076  error = GET_ENDIAN(me, arg2);
2077  break;
2078  case PR_SET_ENDIAN:
2079  error = SET_ENDIAN(me, arg2);
2080  break;
2081  case PR_GET_SECCOMP:
2082  error = prctl_get_seccomp();
2083  break;
2084  case PR_SET_SECCOMP:
2085  error = prctl_set_seccomp(arg2, (char __user *)arg3);
2086  break;
2087  case PR_GET_TSC:
2088  error = GET_TSC_CTL(arg2);
2089  break;
2090  case PR_SET_TSC:
2091  error = SET_TSC_CTL(arg2);
2092  break;
2094  error = perf_event_task_disable();
2095  break;
2097  error = perf_event_task_enable();
2098  break;
2099  case PR_GET_TIMERSLACK:
2100  error = current->timer_slack_ns;
2101  break;
2102  case PR_SET_TIMERSLACK:
2103  if (arg2 <= 0)
2104  current->timer_slack_ns =
2105  current->default_timer_slack_ns;
2106  else
2107  current->timer_slack_ns = arg2;
2108  break;
2109  case PR_MCE_KILL:
2110  if (arg4 | arg5)
2111  return -EINVAL;
2112  switch (arg2) {
2113  case PR_MCE_KILL_CLEAR:
2114  if (arg3 != 0)
2115  return -EINVAL;
2116  current->flags &= ~PF_MCE_PROCESS;
2117  break;
2118  case PR_MCE_KILL_SET:
2119  current->flags |= PF_MCE_PROCESS;
2120  if (arg3 == PR_MCE_KILL_EARLY)
2121  current->flags |= PF_MCE_EARLY;
2122  else if (arg3 == PR_MCE_KILL_LATE)
2123  current->flags &= ~PF_MCE_EARLY;
2124  else if (arg3 == PR_MCE_KILL_DEFAULT)
2125  current->flags &=
2127  else
2128  return -EINVAL;
2129  break;
2130  default:
2131  return -EINVAL;
2132  }
2133  break;
2134  case PR_MCE_KILL_GET:
2135  if (arg2 | arg3 | arg4 | arg5)
2136  return -EINVAL;
2137  if (current->flags & PF_MCE_PROCESS)
2138  error = (current->flags & PF_MCE_EARLY) ?
2140  else
2141  error = PR_MCE_KILL_DEFAULT;
2142  break;
2143  case PR_SET_MM:
2144  error = prctl_set_mm(arg2, arg3, arg4, arg5);
2145  break;
2146  case PR_GET_TID_ADDRESS:
2147  error = prctl_get_tid_address(me, (int __user **)arg2);
2148  break;
2150  me->signal->is_child_subreaper = !!arg2;
2151  break;
2153  error = put_user(me->signal->is_child_subreaper,
2154  (int __user *) arg2);
2155  break;
2156  case PR_SET_NO_NEW_PRIVS:
2157  if (arg2 != 1 || arg3 || arg4 || arg5)
2158  return -EINVAL;
2159 
2160  current->no_new_privs = 1;
2161  break;
2162  case PR_GET_NO_NEW_PRIVS:
2163  if (arg2 || arg3 || arg4 || arg5)
2164  return -EINVAL;
2165  return current->no_new_privs ? 1 : 0;
2166  default:
2167  error = -EINVAL;
2168  break;
2169  }
2170  return error;
2171 }
2172 
2173 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2174  struct getcpu_cache __user *, unused)
2175 {
2176  int err = 0;
2177  int cpu = raw_smp_processor_id();
2178  if (cpup)
2179  err |= put_user(cpu, cpup);
2180  if (nodep)
2181  err |= put_user(cpu_to_node(cpu), nodep);
2182  return err ? -EFAULT : 0;
2183 }
2184 
2185 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2186 
2187 static void argv_cleanup(struct subprocess_info *info)
2188 {
2189  argv_free(info->argv);
2190 }
2191 
2192 static int __orderly_poweroff(void)
2193 {
2194  int argc;
2195  char **argv;
2196  static char *envp[] = {
2197  "HOME=/",
2198  "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2199  NULL
2200  };
2201  int ret;
2202 
2203  argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2204  if (argv == NULL) {
2205  printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2206  __func__, poweroff_cmd);
2207  return -ENOMEM;
2208  }
2209 
2210  ret = call_usermodehelper_fns(argv[0], argv, envp, UMH_WAIT_EXEC,
2211  NULL, argv_cleanup, NULL);
2212  if (ret == -ENOMEM)
2213  argv_free(argv);
2214 
2215  return ret;
2216 }
2217 
2226 {
2227  int ret = __orderly_poweroff();
2228 
2229  if (ret && force) {
2230  printk(KERN_WARNING "Failed to start orderly shutdown: "
2231  "forcing the issue\n");
2232 
2233  /*
2234  * I guess this should try to kick off some daemon to sync and
2235  * poweroff asap. Or not even bother syncing if we're doing an
2236  * emergency shutdown?
2237  */
2238  emergency_sync();
2239  kernel_power_off();
2240  }
2241 
2242  return ret;
2243 }