Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lguest_user.c
Go to the documentation of this file.
1 /*P:200 This contains all the /dev/lguest code, whereby the userspace
2  * launcher controls and communicates with the Guest. For example,
3  * the first write will tell us the Guest's memory layout and entry
4  * point. A read will run the Guest until something happens, such as
5  * a signal or the Guest doing a NOTIFY out to the Launcher. There is
6  * also a way for the Launcher to attach eventfds to particular NOTIFY
7  * values instead of returning from the read() call.
8 :*/
9 #include <linux/uaccess.h>
10 #include <linux/miscdevice.h>
11 #include <linux/fs.h>
12 #include <linux/sched.h>
13 #include <linux/eventfd.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/export.h>
17 #include "lg.h"
18 
19 /*L:056
20  * Before we move on, let's jump ahead and look at what the kernel does when
21  * it needs to look up the eventfds. That will complete our picture of how we
22  * use RCU.
23  *
24  * The notification value is in cpu->pending_notify: we return true if it went
25  * to an eventfd.
26  */
28 {
29  unsigned int i;
30  struct lg_eventfd_map *map;
31 
32  /*
33  * This "rcu_read_lock()" helps track when someone is still looking at
34  * the (RCU-using) eventfds array. It's not actually a lock at all;
35  * indeed it's a noop in many configurations. (You didn't expect me to
36  * explain all the RCU secrets here, did you?)
37  */
38  rcu_read_lock();
39  /*
40  * rcu_dereference is the counter-side of rcu_assign_pointer(); it
41  * makes sure we don't access the memory pointed to by
42  * cpu->lg->eventfds before cpu->lg->eventfds is set. Sounds crazy,
43  * but Alpha allows this! Paul McKenney points out that a really
44  * aggressive compiler could have the same effect:
45  * http://lists.ozlabs.org/pipermail/lguest/2009-July/001560.html
46  *
47  * So play safe, use rcu_dereference to get the rcu-protected pointer:
48  */
49  map = rcu_dereference(cpu->lg->eventfds);
50  /*
51  * Simple array search: even if they add an eventfd while we do this,
52  * we'll continue to use the old array and just won't see the new one.
53  */
54  for (i = 0; i < map->num; i++) {
55  if (map->map[i].addr == cpu->pending_notify) {
56  eventfd_signal(map->map[i].event, 1);
57  cpu->pending_notify = 0;
58  break;
59  }
60  }
61  /* We're done with the rcu-protected variable cpu->lg->eventfds. */
62  rcu_read_unlock();
63 
64  /* If we cleared the notification, it's because we found a match. */
65  return cpu->pending_notify == 0;
66 }
67 
68 /*L:055
69  * One of the more tricksy tricks in the Linux Kernel is a technique called
70  * Read Copy Update. Since one point of lguest is to teach lguest journeyers
71  * about kernel coding, I use it here. (In case you're curious, other purposes
72  * include learning about virtualization and instilling a deep appreciation for
73  * simplicity and puppies).
74  *
75  * We keep a simple array which maps LHCALL_NOTIFY values to eventfds, but we
76  * add new eventfds without ever blocking readers from accessing the array.
77  * The current Launcher only does this during boot, so that never happens. But
78  * Read Copy Update is cool, and adding a lock risks damaging even more puppies
79  * than this code does.
80  *
81  * We allocate a brand new one-larger array, copy the old one and add our new
82  * element. Then we make the lg eventfd pointer point to the new array.
83  * That's the easy part: now we need to free the old one, but we need to make
84  * sure no slow CPU somewhere is still looking at it. That's what
85  * synchronize_rcu does for us: waits until every CPU has indicated that it has
86  * moved on to know it's no longer using the old one.
87  *
88  * If that's unclear, see http://en.wikipedia.org/wiki/Read-copy-update.
89  */
90 static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
91 {
92  struct lg_eventfd_map *new, *old = lg->eventfds;
93 
94  /*
95  * We don't allow notifications on value 0 anyway (pending_notify of
96  * 0 means "nothing pending").
97  */
98  if (!addr)
99  return -EINVAL;
100 
101  /*
102  * Replace the old array with the new one, carefully: others can
103  * be accessing it at the same time.
104  */
105  new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
106  GFP_KERNEL);
107  if (!new)
108  return -ENOMEM;
109 
110  /* First make identical copy. */
111  memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
112  new->num = old->num;
113 
114  /* Now append new entry. */
115  new->map[new->num].addr = addr;
116  new->map[new->num].event = eventfd_ctx_fdget(fd);
117  if (IS_ERR(new->map[new->num].event)) {
118  int err = PTR_ERR(new->map[new->num].event);
119  kfree(new);
120  return err;
121  }
122  new->num++;
123 
124  /*
125  * Now put new one in place: rcu_assign_pointer() is a fancy way of
126  * doing "lg->eventfds = new", but it uses memory barriers to make
127  * absolutely sure that the contents of "new" written above is nailed
128  * down before we actually do the assignment.
129  *
130  * We have to think about these kinds of things when we're operating on
131  * live data without locks.
132  */
133  rcu_assign_pointer(lg->eventfds, new);
134 
135  /*
136  * We're not in a big hurry. Wait until no one's looking at old
137  * version, then free it.
138  */
139  synchronize_rcu();
140  kfree(old);
141 
142  return 0;
143 }
144 
145 /*L:052
146  * Receiving notifications from the Guest is usually done by attaching a
147  * particular LHCALL_NOTIFY value to an event filedescriptor. The eventfd will
148  * become readable when the Guest does an LHCALL_NOTIFY with that value.
149  *
150  * This is really convenient for processing each virtqueue in a separate
151  * thread.
152  */
153 static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
154 {
155  unsigned long addr, fd;
156  int err;
157 
158  if (get_user(addr, input) != 0)
159  return -EFAULT;
160  input++;
161  if (get_user(fd, input) != 0)
162  return -EFAULT;
163 
164  /*
165  * Just make sure two callers don't add eventfds at once. We really
166  * only need to lock against callers adding to the same Guest, so using
167  * the Big Lguest Lock is overkill. But this is setup, not a fast path.
168  */
169  mutex_lock(&lguest_lock);
170  err = add_eventfd(lg, addr, fd);
171  mutex_unlock(&lguest_lock);
172 
173  return err;
174 }
175 
176 /*L:050
177  * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
178  * number to /dev/lguest.
179  */
180 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
181 {
182  unsigned long irq;
183 
184  if (get_user(irq, input) != 0)
185  return -EFAULT;
186  if (irq >= LGUEST_IRQS)
187  return -EINVAL;
188 
189  /*
190  * Next time the Guest runs, the core code will see if it can deliver
191  * this interrupt.
192  */
193  set_interrupt(cpu, irq);
194  return 0;
195 }
196 
197 /*L:040
198  * Once our Guest is initialized, the Launcher makes it run by reading
199  * from /dev/lguest.
200  */
201 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
202 {
203  struct lguest *lg = file->private_data;
204  struct lg_cpu *cpu;
205  unsigned int cpu_id = *o;
206 
207  /* You must write LHREQ_INITIALIZE first! */
208  if (!lg)
209  return -EINVAL;
210 
211  /* Watch out for arbitrary vcpu indexes! */
212  if (cpu_id >= lg->nr_cpus)
213  return -EINVAL;
214 
215  cpu = &lg->cpus[cpu_id];
216 
217  /* If you're not the task which owns the Guest, go away. */
218  if (current != cpu->tsk)
219  return -EPERM;
220 
221  /* If the Guest is already dead, we indicate why */
222  if (lg->dead) {
223  size_t len;
224 
225  /* lg->dead either contains an error code, or a string. */
226  if (IS_ERR(lg->dead))
227  return PTR_ERR(lg->dead);
228 
229  /* We can only return as much as the buffer they read with. */
230  len = min(size, strlen(lg->dead)+1);
231  if (copy_to_user(user, lg->dead, len) != 0)
232  return -EFAULT;
233  return len;
234  }
235 
236  /*
237  * If we returned from read() last time because the Guest sent I/O,
238  * clear the flag.
239  */
240  if (cpu->pending_notify)
241  cpu->pending_notify = 0;
242 
243  /* Run the Guest until something interesting happens. */
244  return run_guest(cpu, (unsigned long __user *)user);
245 }
246 
247 /*L:025
248  * This actually initializes a CPU. For the moment, a Guest is only
249  * uniprocessor, so "id" is always 0.
250  */
251 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
252 {
253  /* We have a limited number the number of CPUs in the lguest struct. */
254  if (id >= ARRAY_SIZE(cpu->lg->cpus))
255  return -EINVAL;
256 
257  /* Set up this CPU's id, and pointer back to the lguest struct. */
258  cpu->id = id;
259  cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
260  cpu->lg->nr_cpus++;
261 
262  /* Each CPU has a timer it can set. */
263  init_clockdev(cpu);
264 
265  /*
266  * We need a complete page for the Guest registers: they are accessible
267  * to the Guest and we can only grant it access to whole pages.
268  */
270  if (!cpu->regs_page)
271  return -ENOMEM;
272 
273  /* We actually put the registers at the bottom of the page. */
274  cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
275 
276  /*
277  * Now we initialize the Guest's registers, handing it the start
278  * address.
279  */
280  lguest_arch_setup_regs(cpu, start_ip);
281 
282  /*
283  * We keep a pointer to the Launcher task (ie. current task) for when
284  * other Guests want to wake this one (eg. console input).
285  */
286  cpu->tsk = current;
287 
288  /*
289  * We need to keep a pointer to the Launcher's memory map, because if
290  * the Launcher dies we need to clean it up. If we don't keep a
291  * reference, it is destroyed before close() is called.
292  */
293  cpu->mm = get_task_mm(cpu->tsk);
294 
295  /*
296  * We remember which CPU's pages this Guest used last, for optimization
297  * when the same Guest runs on the same CPU twice.
298  */
299  cpu->last_pages = NULL;
300 
301  /* No error == success. */
302  return 0;
303 }
304 
305 /*L:020
306  * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
307  * addition to the LHREQ_INITIALIZE value). These are:
308  *
309  * base: The start of the Guest-physical memory inside the Launcher memory.
310  *
311  * pfnlimit: The highest (Guest-physical) page number the Guest should be
312  * allowed to access. The Guest memory lives inside the Launcher, so it sets
313  * this to ensure the Guest can only reach its own memory.
314  *
315  * start: The first instruction to execute ("eip" in x86-speak).
316  */
317 static int initialize(struct file *file, const unsigned long __user *input)
318 {
319  /* "struct lguest" contains all we (the Host) know about a Guest. */
320  struct lguest *lg;
321  int err;
322  unsigned long args[3];
323 
324  /*
325  * We grab the Big Lguest lock, which protects against multiple
326  * simultaneous initializations.
327  */
328  mutex_lock(&lguest_lock);
329  /* You can't initialize twice! Close the device and start again... */
330  if (file->private_data) {
331  err = -EBUSY;
332  goto unlock;
333  }
334 
335  if (copy_from_user(args, input, sizeof(args)) != 0) {
336  err = -EFAULT;
337  goto unlock;
338  }
339 
340  lg = kzalloc(sizeof(*lg), GFP_KERNEL);
341  if (!lg) {
342  err = -ENOMEM;
343  goto unlock;
344  }
345 
346  lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
347  if (!lg->eventfds) {
348  err = -ENOMEM;
349  goto free_lg;
350  }
351  lg->eventfds->num = 0;
352 
353  /* Populate the easy fields of our "struct lguest" */
354  lg->mem_base = (void __user *)args[0];
355  lg->pfn_limit = args[1];
356 
357  /* This is the first cpu (cpu 0) and it will start booting at args[2] */
358  err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
359  if (err)
360  goto free_eventfds;
361 
362  /*
363  * Initialize the Guest's shadow page tables. This allocates
364  * memory, so can fail.
365  */
366  err = init_guest_pagetable(lg);
367  if (err)
368  goto free_regs;
369 
370  /* We keep our "struct lguest" in the file's private_data. */
371  file->private_data = lg;
372 
373  mutex_unlock(&lguest_lock);
374 
375  /* And because this is a write() call, we return the length used. */
376  return sizeof(args);
377 
378 free_regs:
379  /* FIXME: This should be in free_vcpu */
380  free_page(lg->cpus[0].regs_page);
381 free_eventfds:
382  kfree(lg->eventfds);
383 free_lg:
384  kfree(lg);
385 unlock:
386  mutex_unlock(&lguest_lock);
387  return err;
388 }
389 
390 /*L:010
391  * The first operation the Launcher does must be a write. All writes
392  * start with an unsigned long number: for the first write this must be
393  * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
394  * writes of other values to send interrupts or set up receipt of notifications.
395  *
396  * Note that we overload the "offset" in the /dev/lguest file to indicate what
397  * CPU number we're dealing with. Currently this is always 0 since we only
398  * support uniprocessor Guests, but you can see the beginnings of SMP support
399  * here.
400  */
401 static ssize_t write(struct file *file, const char __user *in,
402  size_t size, loff_t *off)
403 {
404  /*
405  * Once the Guest is initialized, we hold the "struct lguest" in the
406  * file private data.
407  */
408  struct lguest *lg = file->private_data;
409  const unsigned long __user *input = (const unsigned long __user *)in;
410  unsigned long req;
411  struct lg_cpu *uninitialized_var(cpu);
412  unsigned int cpu_id = *off;
413 
414  /* The first value tells us what this request is. */
415  if (get_user(req, input) != 0)
416  return -EFAULT;
417  input++;
418 
419  /* If you haven't initialized, you must do that first. */
420  if (req != LHREQ_INITIALIZE) {
421  if (!lg || (cpu_id >= lg->nr_cpus))
422  return -EINVAL;
423  cpu = &lg->cpus[cpu_id];
424 
425  /* Once the Guest is dead, you can only read() why it died. */
426  if (lg->dead)
427  return -ENOENT;
428  }
429 
430  switch (req) {
431  case LHREQ_INITIALIZE:
432  return initialize(file, input);
433  case LHREQ_IRQ:
434  return user_send_irq(cpu, input);
435  case LHREQ_EVENTFD:
436  return attach_eventfd(lg, input);
437  default:
438  return -EINVAL;
439  }
440 }
441 
442 /*L:060
443  * The final piece of interface code is the close() routine. It reverses
444  * everything done in initialize(). This is usually called because the
445  * Launcher exited.
446  *
447  * Note that the close routine returns 0 or a negative error number: it can't
448  * really fail, but it can whine. I blame Sun for this wart, and K&R C for
449  * letting them do it.
450 :*/
451 static int close(struct inode *inode, struct file *file)
452 {
453  struct lguest *lg = file->private_data;
454  unsigned int i;
455 
456  /* If we never successfully initialized, there's nothing to clean up */
457  if (!lg)
458  return 0;
459 
460  /*
461  * We need the big lock, to protect from inter-guest I/O and other
462  * Launchers initializing guests.
463  */
464  mutex_lock(&lguest_lock);
465 
466  /* Free up the shadow page tables for the Guest. */
468 
469  for (i = 0; i < lg->nr_cpus; i++) {
470  /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
471  hrtimer_cancel(&lg->cpus[i].hrt);
472  /* We can free up the register page we allocated. */
473  free_page(lg->cpus[i].regs_page);
474  /*
475  * Now all the memory cleanups are done, it's safe to release
476  * the Launcher's memory management structure.
477  */
478  mmput(lg->cpus[i].mm);
479  }
480 
481  /* Release any eventfds they registered. */
482  for (i = 0; i < lg->eventfds->num; i++)
483  eventfd_ctx_put(lg->eventfds->map[i].event);
484  kfree(lg->eventfds);
485 
486  /*
487  * If lg->dead doesn't contain an error code it will be NULL or a
488  * kmalloc()ed string, either of which is ok to hand to kfree().
489  */
490  if (!IS_ERR(lg->dead))
491  kfree(lg->dead);
492  /* Free the memory allocated to the lguest_struct */
493  kfree(lg);
494  /* Release lock and exit. */
495  mutex_unlock(&lguest_lock);
496 
497  return 0;
498 }
499 
500 /*L:000
501  * Welcome to our journey through the Launcher!
502  *
503  * The Launcher is the Host userspace program which sets up, runs and services
504  * the Guest. In fact, many comments in the Drivers which refer to "the Host"
505  * doing things are inaccurate: the Launcher does all the device handling for
506  * the Guest, but the Guest can't know that.
507  *
508  * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
509  * shall see more of that later.
510  *
511  * We begin our understanding with the Host kernel interface which the Launcher
512  * uses: reading and writing a character device called /dev/lguest. All the
513  * work happens in the read(), write() and close() routines:
514  */
515 static const struct file_operations lguest_fops = {
516  .owner = THIS_MODULE,
517  .release = close,
518  .write = write,
519  .read = read,
520  .llseek = default_llseek,
521 };
522 /*:*/
523 
524 /*
525  * This is a textbook example of a "misc" character device. Populate a "struct
526  * miscdevice" and register it with misc_register().
527  */
528 static struct miscdevice lguest_dev = {
529  .minor = MISC_DYNAMIC_MINOR,
530  .name = "lguest",
531  .fops = &lguest_fops,
532 };
533 
535 {
536  return misc_register(&lguest_dev);
537 }
538 
540 {
541  misc_deregister(&lguest_dev);
542 }