Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lparcfg.c
Go to the documentation of this file.
1 /*
2  * PowerPC64 LPAR Configuration Information Driver
3  *
4  * Dave Engebretsen [email protected]
5  * Copyright (c) 2003 Dave Engebretsen
6  * Will Schmidt [email protected]
7  * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8  * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9  * Nathan Lynch [email protected]
10  * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  *
17  * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18  * keyword - value pairs that specify the configuration of the partition.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <asm/uaccess.h>
29 #include <asm/lppaca.h>
30 #include <asm/hvcall.h>
31 #include <asm/firmware.h>
32 #include <asm/rtas.h>
33 #include <asm/time.h>
34 #include <asm/prom.h>
35 #include <asm/vdso_datapage.h>
36 #include <asm/vio.h>
37 #include <asm/mmu.h>
38 
39 #define MODULE_VERS "1.9"
40 #define MODULE_NAME "lparcfg"
41 
42 /* #define LPARCFG_DEBUG */
43 
44 static struct proc_dir_entry *proc_ppc64_lparcfg;
45 
46 /*
47  * Track sum of all purrs across all processors. This is used to further
48  * calculate usage values by different applications
49  */
50 static unsigned long get_purr(void)
51 {
52  unsigned long sum_purr = 0;
53  int cpu;
54 
56  struct cpu_usage *cu;
57 
58  cu = &per_cpu(cpu_usage_array, cpu);
59  sum_purr += cu->current_tb;
60  }
61  return sum_purr;
62 }
63 
64 /*
65  * Methods used to fetch LPAR data when running on a pSeries platform.
66  */
67 
81 };
82 
83 /*
84  * H_GET_PPP hcall returns info in 4 parms.
85  * entitled_capacity,unallocated_capacity,
86  * aggregation, resource_capability).
87  *
88  * R4 = Entitled Processor Capacity Percentage.
89  * R5 = Unallocated Processor Capacity Percentage.
90  * R6 (AABBCCDDEEFFGGHH).
91  * XXXX - reserved (0)
92  * XXXX - reserved (0)
93  * XXXX - Group Number
94  * XXXX - Pool Number.
95  * R7 (IIJJKKLLMMNNOOPP).
96  * XX - reserved. (0)
97  * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
98  * XX - variable processor Capacity Weight
99  * XX - Unallocated Variable Processor Capacity Weight.
100  * XXXX - Active processors in Physical Processor Pool.
101  * XXXX - Processors active on platform.
102  * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
103  * XXXX - Physical platform procs allocated to virtualization.
104  * XXXXXX - Max procs capacity % available to the partitions pool.
105  * XXXXXX - Entitled procs capacity % available to the
106  * partitions pool.
107  */
108 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
109 {
110  unsigned long rc;
111  unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
112 
113  rc = plpar_hcall9(H_GET_PPP, retbuf);
114 
115  ppp_data->entitlement = retbuf[0];
116  ppp_data->unallocated_entitlement = retbuf[1];
117 
118  ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
119  ppp_data->pool_num = retbuf[2] & 0xffff;
120 
121  ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
122  ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
123  ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
124  ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
125  ppp_data->active_system_procs = retbuf[3] & 0xffff;
126 
127  ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
128  ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
129  ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
130 
131  return rc;
132 }
133 
134 static unsigned h_pic(unsigned long *pool_idle_time,
135  unsigned long *num_procs)
136 {
137  unsigned long rc;
138  unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
139 
140  rc = plpar_hcall(H_PIC, retbuf);
141 
142  *pool_idle_time = retbuf[0];
143  *num_procs = retbuf[1];
144 
145  return rc;
146 }
147 
148 /*
149  * parse_ppp_data
150  * Parse out the data returned from h_get_ppp and h_pic
151  */
152 static void parse_ppp_data(struct seq_file *m)
153 {
154  struct hvcall_ppp_data ppp_data;
155  struct device_node *root;
156  const int *perf_level;
157  int rc;
158 
159  rc = h_get_ppp(&ppp_data);
160  if (rc)
161  return;
162 
163  seq_printf(m, "partition_entitled_capacity=%lld\n",
164  ppp_data.entitlement);
165  seq_printf(m, "group=%d\n", ppp_data.group_num);
166  seq_printf(m, "system_active_processors=%d\n",
167  ppp_data.active_system_procs);
168 
169  /* pool related entries are appropriate for shared configs */
170  if (lppaca_of(0).shared_proc) {
171  unsigned long pool_idle_time, pool_procs;
172 
173  seq_printf(m, "pool=%d\n", ppp_data.pool_num);
174 
175  /* report pool_capacity in percentage */
176  seq_printf(m, "pool_capacity=%d\n",
177  ppp_data.active_procs_in_pool * 100);
178 
179  h_pic(&pool_idle_time, &pool_procs);
180  seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
181  seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
182  }
183 
184  seq_printf(m, "unallocated_capacity_weight=%d\n",
185  ppp_data.unallocated_weight);
186  seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
187  seq_printf(m, "capped=%d\n", ppp_data.capped);
188  seq_printf(m, "unallocated_capacity=%lld\n",
189  ppp_data.unallocated_entitlement);
190 
191  /* The last bits of information returned from h_get_ppp are only
192  * valid if the ibm,partition-performance-parameters-level
193  * property is >= 1.
194  */
195  root = of_find_node_by_path("/");
196  if (root) {
197  perf_level = of_get_property(root,
198  "ibm,partition-performance-parameters-level",
199  NULL);
200  if (perf_level && (*perf_level >= 1)) {
201  seq_printf(m,
202  "physical_procs_allocated_to_virtualization=%d\n",
203  ppp_data.phys_platform_procs);
204  seq_printf(m, "max_proc_capacity_available=%d\n",
205  ppp_data.max_proc_cap_avail);
206  seq_printf(m, "entitled_proc_capacity_available=%d\n",
207  ppp_data.entitled_proc_cap_avail);
208  }
209 
210  of_node_put(root);
211  }
212 }
213 
218 static void parse_mpp_data(struct seq_file *m)
219 {
220  struct hvcall_mpp_data mpp_data;
221  int rc;
222 
223  rc = h_get_mpp(&mpp_data);
224  if (rc)
225  return;
226 
227  seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
228 
229  if (mpp_data.mapped_mem != -1)
230  seq_printf(m, "mapped_entitled_memory=%ld\n",
231  mpp_data.mapped_mem);
232 
233  seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
234  seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
235 
236  seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
237  seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
238  mpp_data.unallocated_mem_weight);
239  seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
240  mpp_data.unallocated_entitlement);
241 
242  if (mpp_data.pool_size != -1)
243  seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
244  mpp_data.pool_size);
245 
246  seq_printf(m, "entitled_memory_loan_request=%ld\n",
247  mpp_data.loan_request);
248 
249  seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
250 }
251 
256 static void parse_mpp_x_data(struct seq_file *m)
257 {
258  struct hvcall_mpp_x_data mpp_x_data;
259 
260  if (!firmware_has_feature(FW_FEATURE_XCMO))
261  return;
262  if (h_get_mpp_x(&mpp_x_data))
263  return;
264 
265  seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
266 
267  if (mpp_x_data.pool_coalesced_bytes)
268  seq_printf(m, "pool_coalesced_bytes=%ld\n",
269  mpp_x_data.pool_coalesced_bytes);
270  if (mpp_x_data.pool_purr_cycles)
271  seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
272  if (mpp_x_data.pool_spurr_cycles)
273  seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
274 }
275 
276 #define SPLPAR_CHARACTERISTICS_TOKEN 20
277 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
278 
279 /*
280  * parse_system_parameter_string()
281  * Retrieve the potential_processors, max_entitled_capacity and friends
282  * through the get-system-parameter rtas call. Replace keyword strings as
283  * necessary.
284  */
285 static void parse_system_parameter_string(struct seq_file *m)
286 {
287  int call_status;
288 
289  unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
290  if (!local_buffer) {
291  printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
292  __FILE__, __func__, __LINE__);
293  return;
294  }
295 
296  spin_lock(&rtas_data_buf_lock);
297  memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
298  call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
299  NULL,
301  __pa(rtas_data_buf),
302  RTAS_DATA_BUF_SIZE);
303  memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
304  spin_unlock(&rtas_data_buf_lock);
305 
306  if (call_status != 0) {
308  "%s %s Error calling get-system-parameter (0x%x)\n",
309  __FILE__, __func__, call_status);
310  } else {
311  int splpar_strlen;
312  int idx, w_idx;
313  char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
314  if (!workbuffer) {
315  printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
316  __FILE__, __func__, __LINE__);
317  kfree(local_buffer);
318  return;
319  }
320 #ifdef LPARCFG_DEBUG
321  printk(KERN_INFO "success calling get-system-parameter\n");
322 #endif
323  splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
324  local_buffer += 2; /* step over strlen value */
325 
326  w_idx = 0;
327  idx = 0;
328  while ((*local_buffer) && (idx < splpar_strlen)) {
329  workbuffer[w_idx++] = local_buffer[idx++];
330  if ((local_buffer[idx] == ',')
331  || (local_buffer[idx] == '\0')) {
332  workbuffer[w_idx] = '\0';
333  if (w_idx) {
334  /* avoid the empty string */
335  seq_printf(m, "%s\n", workbuffer);
336  }
337  memset(workbuffer, 0, SPLPAR_MAXLENGTH);
338  idx++; /* skip the comma */
339  w_idx = 0;
340  } else if (local_buffer[idx] == '=') {
341  /* code here to replace workbuffer contents
342  with different keyword strings */
343  if (0 == strcmp(workbuffer, "MaxEntCap")) {
344  strcpy(workbuffer,
345  "partition_max_entitled_capacity");
346  w_idx = strlen(workbuffer);
347  }
348  if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
349  strcpy(workbuffer,
350  "system_potential_processors");
351  w_idx = strlen(workbuffer);
352  }
353  }
354  }
355  kfree(workbuffer);
356  local_buffer -= 2; /* back up over strlen value */
357  }
358  kfree(local_buffer);
359 }
360 
361 /* Return the number of processors in the system.
362  * This function reads through the device tree and counts
363  * the virtual processors, this does not include threads.
364  */
365 static int lparcfg_count_active_processors(void)
366 {
367  struct device_node *cpus_dn = NULL;
368  int count = 0;
369 
370  while ((cpus_dn = of_find_node_by_type(cpus_dn, "cpu"))) {
371 #ifdef LPARCFG_DEBUG
372  printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
373 #endif
374  count++;
375  }
376  return count;
377 }
378 
379 static void pseries_cmo_data(struct seq_file *m)
380 {
381  int cpu;
382  unsigned long cmo_faults = 0;
383  unsigned long cmo_fault_time = 0;
384 
385  seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
386 
387  if (!firmware_has_feature(FW_FEATURE_CMO))
388  return;
389 
390  for_each_possible_cpu(cpu) {
391  cmo_faults += lppaca_of(cpu).cmo_faults;
392  cmo_fault_time += lppaca_of(cpu).cmo_fault_time;
393  }
394 
395  seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
396  seq_printf(m, "cmo_fault_time_usec=%lu\n",
397  cmo_fault_time / tb_ticks_per_usec);
398  seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
399  seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
400  seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
401 }
402 
403 static void splpar_dispatch_data(struct seq_file *m)
404 {
405  int cpu;
406  unsigned long dispatches = 0;
407  unsigned long dispatch_dispersions = 0;
408 
409  for_each_possible_cpu(cpu) {
410  dispatches += lppaca_of(cpu).yield_count;
411  dispatch_dispersions += lppaca_of(cpu).dispersion_count;
412  }
413 
414  seq_printf(m, "dispatches=%lu\n", dispatches);
415  seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
416 }
417 
418 static void parse_em_data(struct seq_file *m)
419 {
420  unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
421 
422  if (plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
423  seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
424 }
425 
426 static int pseries_lparcfg_data(struct seq_file *m, void *v)
427 {
428  int partition_potential_processors;
429  int partition_active_processors;
430  struct device_node *rtas_node;
431  const int *lrdrp = NULL;
432 
433  rtas_node = of_find_node_by_path("/rtas");
434  if (rtas_node)
435  lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
436 
437  if (lrdrp == NULL) {
438  partition_potential_processors = vdso_data->processorCount;
439  } else {
440  partition_potential_processors = *(lrdrp + 4);
441  }
442  of_node_put(rtas_node);
443 
444  partition_active_processors = lparcfg_count_active_processors();
445 
446  if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
447  /* this call handles the ibm,get-system-parameter contents */
448  parse_system_parameter_string(m);
449  parse_ppp_data(m);
450  parse_mpp_data(m);
451  parse_mpp_x_data(m);
452  pseries_cmo_data(m);
453  splpar_dispatch_data(m);
454 
455  seq_printf(m, "purr=%ld\n", get_purr());
456  } else { /* non SPLPAR case */
457 
458  seq_printf(m, "system_active_processors=%d\n",
459  partition_potential_processors);
460 
461  seq_printf(m, "system_potential_processors=%d\n",
462  partition_potential_processors);
463 
464  seq_printf(m, "partition_max_entitled_capacity=%d\n",
465  partition_potential_processors * 100);
466 
467  seq_printf(m, "partition_entitled_capacity=%d\n",
468  partition_active_processors * 100);
469  }
470 
471  seq_printf(m, "partition_active_processors=%d\n",
472  partition_active_processors);
473 
474  seq_printf(m, "partition_potential_processors=%d\n",
475  partition_potential_processors);
476 
477  seq_printf(m, "shared_processor_mode=%d\n", lppaca_of(0).shared_proc);
478 
479  seq_printf(m, "slb_size=%d\n", mmu_slb_size);
480 
481  parse_em_data(m);
482 
483  return 0;
484 }
485 
486 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
487 {
488  struct hvcall_ppp_data ppp_data;
489  u8 new_weight;
490  u64 new_entitled;
491  ssize_t retval;
492 
493  /* Get our current parameters */
494  retval = h_get_ppp(&ppp_data);
495  if (retval)
496  return retval;
497 
498  if (entitlement) {
499  new_weight = ppp_data.weight;
500  new_entitled = *entitlement;
501  } else if (weight) {
502  new_weight = *weight;
503  new_entitled = ppp_data.entitlement;
504  } else
505  return -EINVAL;
506 
507  pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
508  __func__, ppp_data.entitlement, ppp_data.weight);
509 
510  pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
511  __func__, new_entitled, new_weight);
512 
513  retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
514  return retval;
515 }
516 
524 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
525 {
526  struct hvcall_mpp_data mpp_data;
527  u64 new_entitled;
528  u8 new_weight;
529  ssize_t rc;
530 
531  if (entitlement) {
532  /* Check with vio to ensure the new memory entitlement
533  * can be handled.
534  */
535  rc = vio_cmo_entitlement_update(*entitlement);
536  if (rc)
537  return rc;
538  }
539 
540  rc = h_get_mpp(&mpp_data);
541  if (rc)
542  return rc;
543 
544  if (entitlement) {
545  new_weight = mpp_data.mem_weight;
546  new_entitled = *entitlement;
547  } else if (weight) {
548  new_weight = *weight;
549  new_entitled = mpp_data.entitled_mem;
550  } else
551  return -EINVAL;
552 
553  pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
554  __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
555 
556  pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
557  __func__, new_entitled, new_weight);
558 
559  rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
560  return rc;
561 }
562 
563 /*
564  * Interface for changing system parameters (variable capacity weight
565  * and entitled capacity). Format of input is "param_name=value";
566  * anything after value is ignored. Valid parameters at this time are
567  * "partition_entitled_capacity" and "capacity_weight". We use
568  * H_SET_PPP to alter parameters.
569  *
570  * This function should be invoked only on systems with
571  * FW_FEATURE_SPLPAR.
572  */
573 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
574  size_t count, loff_t * off)
575 {
576  int kbuf_sz = 64;
577  char kbuf[kbuf_sz];
578  char *tmp;
579  u64 new_entitled, *new_entitled_ptr = &new_entitled;
580  u8 new_weight, *new_weight_ptr = &new_weight;
581  ssize_t retval;
582 
583  if (!firmware_has_feature(FW_FEATURE_SPLPAR))
584  return -EINVAL;
585 
586  if (count > kbuf_sz)
587  return -EINVAL;
588 
589  if (copy_from_user(kbuf, buf, count))
590  return -EFAULT;
591 
592  kbuf[count - 1] = '\0';
593  tmp = strchr(kbuf, '=');
594  if (!tmp)
595  return -EINVAL;
596 
597  *tmp++ = '\0';
598 
599  if (!strcmp(kbuf, "partition_entitled_capacity")) {
600  char *endp;
601  *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
602  if (endp == tmp)
603  return -EINVAL;
604 
605  retval = update_ppp(new_entitled_ptr, NULL);
606  } else if (!strcmp(kbuf, "capacity_weight")) {
607  char *endp;
608  *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
609  if (endp == tmp)
610  return -EINVAL;
611 
612  retval = update_ppp(NULL, new_weight_ptr);
613  } else if (!strcmp(kbuf, "entitled_memory")) {
614  char *endp;
615  *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
616  if (endp == tmp)
617  return -EINVAL;
618 
619  retval = update_mpp(new_entitled_ptr, NULL);
620  } else if (!strcmp(kbuf, "entitled_memory_weight")) {
621  char *endp;
622  *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
623  if (endp == tmp)
624  return -EINVAL;
625 
626  retval = update_mpp(NULL, new_weight_ptr);
627  } else
628  return -EINVAL;
629 
630  if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
631  retval = count;
632  } else if (retval == H_BUSY) {
633  retval = -EBUSY;
634  } else if (retval == H_HARDWARE) {
635  retval = -EIO;
636  } else if (retval == H_PARAMETER) {
637  retval = -EINVAL;
638  }
639 
640  return retval;
641 }
642 
643 static int lparcfg_data(struct seq_file *m, void *v)
644 {
645  struct device_node *rootdn;
646  const char *model = "";
647  const char *system_id = "";
648  const char *tmp;
649  const unsigned int *lp_index_ptr;
650  unsigned int lp_index = 0;
651 
652  seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
653 
654  rootdn = of_find_node_by_path("/");
655  if (rootdn) {
656  tmp = of_get_property(rootdn, "model", NULL);
657  if (tmp)
658  model = tmp;
659  tmp = of_get_property(rootdn, "system-id", NULL);
660  if (tmp)
661  system_id = tmp;
662  lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
663  NULL);
664  if (lp_index_ptr)
665  lp_index = *lp_index_ptr;
666  of_node_put(rootdn);
667  }
668  seq_printf(m, "serial_number=%s\n", system_id);
669  seq_printf(m, "system_type=%s\n", model);
670  seq_printf(m, "partition_id=%d\n", (int)lp_index);
671 
672  return pseries_lparcfg_data(m, v);
673 }
674 
675 static int lparcfg_open(struct inode *inode, struct file *file)
676 {
677  return single_open(file, lparcfg_data, NULL);
678 }
679 
680 static const struct file_operations lparcfg_fops = {
681  .owner = THIS_MODULE,
682  .read = seq_read,
683  .write = lparcfg_write,
684  .open = lparcfg_open,
685  .release = single_release,
686  .llseek = seq_lseek,
687 };
688 
689 static int __init lparcfg_init(void)
690 {
691  struct proc_dir_entry *ent;
693 
694  /* Allow writing if we have FW_FEATURE_SPLPAR */
695  if (firmware_has_feature(FW_FEATURE_SPLPAR))
696  mode |= S_IWUSR;
697 
698  ent = proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops);
699  if (!ent) {
700  printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
701  return -EIO;
702  }
703 
704  proc_ppc64_lparcfg = ent;
705  return 0;
706 }
707 
708 static void __exit lparcfg_cleanup(void)
709 {
710  if (proc_ppc64_lparcfg)
711  remove_proc_entry("lparcfg", proc_ppc64_lparcfg->parent);
712 }
713 
714 module_init(lparcfg_init);
715 module_exit(lparcfg_cleanup);
716 MODULE_DESCRIPTION("Interface for LPAR configuration data");
717 MODULE_AUTHOR("Dave Engebretsen");
718 MODULE_LICENSE("GPL");