Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lpddr_cmds.c
Go to the documentation of this file.
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <[email protected]>
5  * (C) 2008 Vasiliy Leonenko <[email protected]>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33  size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35  size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37  unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42  size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47 
49 {
50  struct lpddr_private *lpddr = map->fldrv_priv;
51  struct flchip_shared *shared;
52  struct flchip *chip;
53  struct mtd_info *mtd;
54  int numchips;
55  int i, j;
56 
57  mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58  if (!mtd) {
59  printk(KERN_ERR "Failed to allocate memory for MTD device\n");
60  return NULL;
61  }
62  mtd->priv = map;
63  mtd->type = MTD_NORFLASH;
64 
65  /* Fill in the default mtd operations */
66  mtd->_read = lpddr_read;
67  mtd->type = MTD_NORFLASH;
68  mtd->flags = MTD_CAP_NORFLASH;
69  mtd->flags &= ~MTD_BIT_WRITEABLE;
70  mtd->_erase = lpddr_erase;
71  mtd->_write = lpddr_write_buffers;
72  mtd->_writev = lpddr_writev;
73  mtd->_lock = lpddr_lock;
74  mtd->_unlock = lpddr_unlock;
75  if (map_is_linear(map)) {
76  mtd->_point = lpddr_point;
77  mtd->_unpoint = lpddr_unpoint;
78  }
79  mtd->size = 1 << lpddr->qinfo->DevSizeShift;
80  mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
81  mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
82 
83  shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
84  GFP_KERNEL);
85  if (!shared) {
86  kfree(lpddr);
87  kfree(mtd);
88  return NULL;
89  }
90 
91  chip = &lpddr->chips[0];
92  numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
93  for (i = 0; i < numchips; i++) {
94  shared[i].writing = shared[i].erasing = NULL;
95  mutex_init(&shared[i].lock);
96  for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
97  *chip = lpddr->chips[i];
98  chip->start += j << lpddr->chipshift;
99  chip->oldstate = chip->state = FL_READY;
100  chip->priv = &shared[i];
101  /* those should be reset too since
102  they create memory references. */
103  init_waitqueue_head(&chip->wq);
104  mutex_init(&chip->mutex);
105  chip++;
106  }
107  }
108 
109  return mtd;
110 }
112 
113 static int wait_for_ready(struct map_info *map, struct flchip *chip,
114  unsigned int chip_op_time)
115 {
116  unsigned int timeo, reset_timeo, sleep_time;
117  unsigned int dsr;
118  flstate_t chip_state = chip->state;
119  int ret = 0;
120 
121  /* set our timeout to 8 times the expected delay */
122  timeo = chip_op_time * 8;
123  if (!timeo)
124  timeo = 500000;
125  reset_timeo = timeo;
126  sleep_time = chip_op_time / 2;
127 
128  for (;;) {
129  dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130  if (dsr & DSR_READY_STATUS)
131  break;
132  if (!timeo) {
133  printk(KERN_ERR "%s: Flash timeout error state %d \n",
134  map->name, chip_state);
135  ret = -ETIME;
136  break;
137  }
138 
139  /* OK Still waiting. Drop the lock, wait a while and retry. */
140  mutex_unlock(&chip->mutex);
141  if (sleep_time >= 1000000/HZ) {
142  /*
143  * Half of the normal delay still remaining
144  * can be performed with a sleeping delay instead
145  * of busy waiting.
146  */
147  msleep(sleep_time/1000);
148  timeo -= sleep_time;
149  sleep_time = 1000000/HZ;
150  } else {
151  udelay(1);
152  cond_resched();
153  timeo--;
154  }
155  mutex_lock(&chip->mutex);
156 
157  while (chip->state != chip_state) {
158  /* Someone's suspended the operation: sleep */
161  add_wait_queue(&chip->wq, &wait);
162  mutex_unlock(&chip->mutex);
163  schedule();
164  remove_wait_queue(&chip->wq, &wait);
165  mutex_lock(&chip->mutex);
166  }
167  if (chip->erase_suspended || chip->write_suspended) {
168  /* Suspend has occurred while sleep: reset timeout */
169  timeo = reset_timeo;
170  chip->erase_suspended = chip->write_suspended = 0;
171  }
172  }
173  /* check status for errors */
174  if (dsr & DSR_ERR) {
175  /* Clear DSR*/
176  map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177  printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
178  map->name, dsr);
179  print_drs_error(dsr);
180  ret = -EIO;
181  }
182  chip->state = FL_READY;
183  return ret;
184 }
185 
186 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
187 {
188  int ret;
190 
191  retry:
192  if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193  && chip->state != FL_SYNCING) {
194  /*
195  * OK. We have possibility for contension on the write/erase
196  * operations which are global to the real chip and not per
197  * partition. So let's fight it over in the partition which
198  * currently has authority on the operation.
199  *
200  * The rules are as follows:
201  *
202  * - any write operation must own shared->writing.
203  *
204  * - any erase operation must own _both_ shared->writing and
205  * shared->erasing.
206  *
207  * - contension arbitration is handled in the owner's context.
208  *
209  * The 'shared' struct can be read and/or written only when
210  * its lock is taken.
211  */
212  struct flchip_shared *shared = chip->priv;
213  struct flchip *contender;
214  mutex_lock(&shared->lock);
215  contender = shared->writing;
216  if (contender && contender != chip) {
217  /*
218  * The engine to perform desired operation on this
219  * partition is already in use by someone else.
220  * Let's fight over it in the context of the chip
221  * currently using it. If it is possible to suspend,
222  * that other partition will do just that, otherwise
223  * it'll happily send us to sleep. In any case, when
224  * get_chip returns success we're clear to go ahead.
225  */
226  ret = mutex_trylock(&contender->mutex);
227  mutex_unlock(&shared->lock);
228  if (!ret)
229  goto retry;
230  mutex_unlock(&chip->mutex);
231  ret = chip_ready(map, contender, mode);
232  mutex_lock(&chip->mutex);
233 
234  if (ret == -EAGAIN) {
235  mutex_unlock(&contender->mutex);
236  goto retry;
237  }
238  if (ret) {
239  mutex_unlock(&contender->mutex);
240  return ret;
241  }
242  mutex_lock(&shared->lock);
243 
244  /* We should not own chip if it is already in FL_SYNCING
245  * state. Put contender and retry. */
246  if (chip->state == FL_SYNCING) {
247  put_chip(map, contender);
248  mutex_unlock(&contender->mutex);
249  goto retry;
250  }
251  mutex_unlock(&contender->mutex);
252  }
253 
254  /* Check if we have suspended erase on this chip.
255  Must sleep in such a case. */
256  if (mode == FL_ERASING && shared->erasing
257  && shared->erasing->oldstate == FL_ERASING) {
258  mutex_unlock(&shared->lock);
260  add_wait_queue(&chip->wq, &wait);
261  mutex_unlock(&chip->mutex);
262  schedule();
263  remove_wait_queue(&chip->wq, &wait);
264  mutex_lock(&chip->mutex);
265  goto retry;
266  }
267 
268  /* We now own it */
269  shared->writing = chip;
270  if (mode == FL_ERASING)
271  shared->erasing = chip;
272  mutex_unlock(&shared->lock);
273  }
274 
275  ret = chip_ready(map, chip, mode);
276  if (ret == -EAGAIN)
277  goto retry;
278 
279  return ret;
280 }
281 
282 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
283 {
284  struct lpddr_private *lpddr = map->fldrv_priv;
285  int ret = 0;
287 
288  /* Prevent setting state FL_SYNCING for chip in suspended state. */
289  if (FL_SYNCING == mode && FL_READY != chip->oldstate)
290  goto sleep;
291 
292  switch (chip->state) {
293  case FL_READY:
294  case FL_JEDEC_QUERY:
295  return 0;
296 
297  case FL_ERASING:
298  if (!lpddr->qinfo->SuspEraseSupp ||
299  !(mode == FL_READY || mode == FL_POINT))
300  goto sleep;
301 
304  chip->oldstate = FL_ERASING;
305  chip->state = FL_ERASE_SUSPENDING;
306  ret = wait_for_ready(map, chip, 0);
307  if (ret) {
308  /* Oops. something got wrong. */
309  /* Resume and pretend we weren't here. */
310  put_chip(map, chip);
311  printk(KERN_ERR "%s: suspend operation failed."
312  "State may be wrong \n", map->name);
313  return -EIO;
314  }
315  chip->erase_suspended = 1;
316  chip->state = FL_READY;
317  return 0;
318  /* Erase suspend */
319  case FL_POINT:
320  /* Only if there's no operation suspended... */
321  if (mode == FL_READY && chip->oldstate == FL_READY)
322  return 0;
323 
324  default:
325 sleep:
327  add_wait_queue(&chip->wq, &wait);
328  mutex_unlock(&chip->mutex);
329  schedule();
330  remove_wait_queue(&chip->wq, &wait);
331  mutex_lock(&chip->mutex);
332  return -EAGAIN;
333  }
334 }
335 
336 static void put_chip(struct map_info *map, struct flchip *chip)
337 {
338  if (chip->priv) {
339  struct flchip_shared *shared = chip->priv;
340  mutex_lock(&shared->lock);
341  if (shared->writing == chip && chip->oldstate == FL_READY) {
342  /* We own the ability to write, but we're done */
343  shared->writing = shared->erasing;
344  if (shared->writing && shared->writing != chip) {
345  /* give back the ownership */
346  struct flchip *loaner = shared->writing;
347  mutex_lock(&loaner->mutex);
348  mutex_unlock(&shared->lock);
349  mutex_unlock(&chip->mutex);
350  put_chip(map, loaner);
351  mutex_lock(&chip->mutex);
352  mutex_unlock(&loaner->mutex);
353  wake_up(&chip->wq);
354  return;
355  }
356  shared->erasing = NULL;
357  shared->writing = NULL;
358  } else if (shared->erasing == chip && shared->writing != chip) {
359  /*
360  * We own the ability to erase without the ability
361  * to write, which means the erase was suspended
362  * and some other partition is currently writing.
363  * Don't let the switch below mess things up since
364  * we don't have ownership to resume anything.
365  */
366  mutex_unlock(&shared->lock);
367  wake_up(&chip->wq);
368  return;
369  }
370  mutex_unlock(&shared->lock);
371  }
372 
373  switch (chip->oldstate) {
374  case FL_ERASING:
375  map_write(map, CMD(LPDDR_RESUME),
379  chip->oldstate = FL_READY;
380  chip->state = FL_ERASING;
381  break;
382  case FL_READY:
383  break;
384  default:
385  printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386  map->name, chip->oldstate);
387  }
388  wake_up(&chip->wq);
389 }
390 
391 int do_write_buffer(struct map_info *map, struct flchip *chip,
392  unsigned long adr, const struct kvec **pvec,
393  unsigned long *pvec_seek, int len)
394 {
395  struct lpddr_private *lpddr = map->fldrv_priv;
396  map_word datum;
397  int ret, wbufsize, word_gap, words;
398  const struct kvec *vec;
399  unsigned long vec_seek;
400  unsigned long prog_buf_ofs;
401 
402  wbufsize = 1 << lpddr->qinfo->BufSizeShift;
403 
404  mutex_lock(&chip->mutex);
405  ret = get_chip(map, chip, FL_WRITING);
406  if (ret) {
407  mutex_unlock(&chip->mutex);
408  return ret;
409  }
410  /* Figure out the number of words to write */
411  word_gap = (-adr & (map_bankwidth(map)-1));
412  words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
413  if (!word_gap) {
414  words--;
415  } else {
416  word_gap = map_bankwidth(map) - word_gap;
417  adr -= word_gap;
418  datum = map_word_ff(map);
419  }
420  /* Write data */
421  /* Get the program buffer offset from PFOW register data first*/
422  prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
424  vec = *pvec;
425  vec_seek = *pvec_seek;
426  do {
427  int n = map_bankwidth(map) - word_gap;
428 
429  if (n > vec->iov_len - vec_seek)
430  n = vec->iov_len - vec_seek;
431  if (n > len)
432  n = len;
433 
434  if (!word_gap && (len < map_bankwidth(map)))
435  datum = map_word_ff(map);
436 
437  datum = map_word_load_partial(map, datum,
438  vec->iov_base + vec_seek, word_gap, n);
439 
440  len -= n;
441  word_gap += n;
442  if (!len || word_gap == map_bankwidth(map)) {
443  map_write(map, datum, prog_buf_ofs);
444  prog_buf_ofs += map_bankwidth(map);
445  word_gap = 0;
446  }
447 
448  vec_seek += n;
449  if (vec_seek == vec->iov_len) {
450  vec++;
451  vec_seek = 0;
452  }
453  } while (len);
454  *pvec = vec;
455  *pvec_seek = vec_seek;
456 
457  /* GO GO GO */
458  send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459  chip->state = FL_WRITING;
460  ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
461  if (ret) {
462  printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463  map->name, ret, adr);
464  goto out;
465  }
466 
467  out: put_chip(map, chip);
468  mutex_unlock(&chip->mutex);
469  return ret;
470 }
471 
472 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
473 {
474  struct map_info *map = mtd->priv;
475  struct lpddr_private *lpddr = map->fldrv_priv;
476  int chipnum = adr >> lpddr->chipshift;
477  struct flchip *chip = &lpddr->chips[chipnum];
478  int ret;
479 
480  mutex_lock(&chip->mutex);
481  ret = get_chip(map, chip, FL_ERASING);
482  if (ret) {
483  mutex_unlock(&chip->mutex);
484  return ret;
485  }
486  send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487  chip->state = FL_ERASING;
488  ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
489  if (ret) {
490  printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491  map->name, ret, adr);
492  goto out;
493  }
494  out: put_chip(map, chip);
495  mutex_unlock(&chip->mutex);
496  return ret;
497 }
498 
499 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500  size_t *retlen, u_char *buf)
501 {
502  struct map_info *map = mtd->priv;
503  struct lpddr_private *lpddr = map->fldrv_priv;
504  int chipnum = adr >> lpddr->chipshift;
505  struct flchip *chip = &lpddr->chips[chipnum];
506  int ret = 0;
507 
508  mutex_lock(&chip->mutex);
509  ret = get_chip(map, chip, FL_READY);
510  if (ret) {
511  mutex_unlock(&chip->mutex);
512  return ret;
513  }
514 
515  map_copy_from(map, buf, adr, len);
516  *retlen = len;
517 
518  put_chip(map, chip);
519  mutex_unlock(&chip->mutex);
520  return ret;
521 }
522 
523 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524  size_t *retlen, void **mtdbuf, resource_size_t *phys)
525 {
526  struct map_info *map = mtd->priv;
527  struct lpddr_private *lpddr = map->fldrv_priv;
528  int chipnum = adr >> lpddr->chipshift;
529  unsigned long ofs, last_end = 0;
530  struct flchip *chip = &lpddr->chips[chipnum];
531  int ret = 0;
532 
533  if (!map->virt)
534  return -EINVAL;
535 
536  /* ofs: offset within the first chip that the first read should start */
537  ofs = adr - (chipnum << lpddr->chipshift);
538  *mtdbuf = (void *)map->virt + chip->start + ofs;
539 
540  while (len) {
541  unsigned long thislen;
542 
543  if (chipnum >= lpddr->numchips)
544  break;
545 
546  /* We cannot point across chips that are virtually disjoint */
547  if (!last_end)
548  last_end = chip->start;
549  else if (chip->start != last_end)
550  break;
551 
552  if ((len + ofs - 1) >> lpddr->chipshift)
553  thislen = (1<<lpddr->chipshift) - ofs;
554  else
555  thislen = len;
556  /* get the chip */
557  mutex_lock(&chip->mutex);
558  ret = get_chip(map, chip, FL_POINT);
559  mutex_unlock(&chip->mutex);
560  if (ret)
561  break;
562 
563  chip->state = FL_POINT;
564  chip->ref_point_counter++;
565  *retlen += thislen;
566  len -= thislen;
567 
568  ofs = 0;
569  last_end += 1 << lpddr->chipshift;
570  chipnum++;
571  chip = &lpddr->chips[chipnum];
572  }
573  return 0;
574 }
575 
576 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
577 {
578  struct map_info *map = mtd->priv;
579  struct lpddr_private *lpddr = map->fldrv_priv;
580  int chipnum = adr >> lpddr->chipshift, err = 0;
581  unsigned long ofs;
582 
583  /* ofs: offset within the first chip that the first read should start */
584  ofs = adr - (chipnum << lpddr->chipshift);
585 
586  while (len) {
587  unsigned long thislen;
588  struct flchip *chip;
589 
590  chip = &lpddr->chips[chipnum];
591  if (chipnum >= lpddr->numchips)
592  break;
593 
594  if ((len + ofs - 1) >> lpddr->chipshift)
595  thislen = (1<<lpddr->chipshift) - ofs;
596  else
597  thislen = len;
598 
599  mutex_lock(&chip->mutex);
600  if (chip->state == FL_POINT) {
601  chip->ref_point_counter--;
602  if (chip->ref_point_counter == 0)
603  chip->state = FL_READY;
604  } else {
605  printk(KERN_WARNING "%s: Warning: unpoint called on non"
606  "pointed region\n", map->name);
607  err = -EINVAL;
608  }
609 
610  put_chip(map, chip);
611  mutex_unlock(&chip->mutex);
612 
613  len -= thislen;
614  ofs = 0;
615  chipnum++;
616  }
617 
618  return err;
619 }
620 
621 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622  size_t *retlen, const u_char *buf)
623 {
624  struct kvec vec;
625 
626  vec.iov_base = (void *) buf;
627  vec.iov_len = len;
628 
629  return lpddr_writev(mtd, &vec, 1, to, retlen);
630 }
631 
632 
633 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634  unsigned long count, loff_t to, size_t *retlen)
635 {
636  struct map_info *map = mtd->priv;
637  struct lpddr_private *lpddr = map->fldrv_priv;
638  int ret = 0;
639  int chipnum;
640  unsigned long ofs, vec_seek, i;
641  int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
642  size_t len = 0;
643 
644  for (i = 0; i < count; i++)
645  len += vecs[i].iov_len;
646 
647  if (!len)
648  return 0;
649 
650  chipnum = to >> lpddr->chipshift;
651 
652  ofs = to;
653  vec_seek = 0;
654 
655  do {
656  /* We must not cross write block boundaries */
657  int size = wbufsize - (ofs & (wbufsize-1));
658 
659  if (size > len)
660  size = len;
661 
662  ret = do_write_buffer(map, &lpddr->chips[chipnum],
663  ofs, &vecs, &vec_seek, size);
664  if (ret)
665  return ret;
666 
667  ofs += size;
668  (*retlen) += size;
669  len -= size;
670 
671  /* Be nice and reschedule with the chip in a usable
672  * state for other processes */
673  cond_resched();
674 
675  } while (len);
676 
677  return 0;
678 }
679 
680 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
681 {
682  unsigned long ofs, len;
683  int ret;
684  struct map_info *map = mtd->priv;
685  struct lpddr_private *lpddr = map->fldrv_priv;
686  int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
687 
688  ofs = instr->addr;
689  len = instr->len;
690 
691  while (len > 0) {
692  ret = do_erase_oneblock(mtd, ofs);
693  if (ret)
694  return ret;
695  ofs += size;
696  len -= size;
697  }
698  instr->state = MTD_ERASE_DONE;
699  mtd_erase_callback(instr);
700 
701  return 0;
702 }
703 
704 #define DO_XXLOCK_LOCK 1
705 #define DO_XXLOCK_UNLOCK 2
706 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
707 {
708  int ret = 0;
709  struct map_info *map = mtd->priv;
710  struct lpddr_private *lpddr = map->fldrv_priv;
711  int chipnum = adr >> lpddr->chipshift;
712  struct flchip *chip = &lpddr->chips[chipnum];
713 
714  mutex_lock(&chip->mutex);
715  ret = get_chip(map, chip, FL_LOCKING);
716  if (ret) {
717  mutex_unlock(&chip->mutex);
718  return ret;
719  }
720 
721  if (thunk == DO_XXLOCK_LOCK) {
722  send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723  chip->state = FL_LOCKING;
724  } else if (thunk == DO_XXLOCK_UNLOCK) {
725  send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726  chip->state = FL_UNLOCKING;
727  } else
728  BUG();
729 
730  ret = wait_for_ready(map, chip, 1);
731  if (ret) {
732  printk(KERN_ERR "%s: block unlock error status %d \n",
733  map->name, ret);
734  goto out;
735  }
736 out: put_chip(map, chip);
737  mutex_unlock(&chip->mutex);
738  return ret;
739 }
740 
741 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
742 {
743  return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
744 }
745 
746 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
747 {
748  return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
749 }
750 
751 int word_program(struct map_info *map, loff_t adr, uint32_t curval)
752 {
753  int ret;
754  struct lpddr_private *lpddr = map->fldrv_priv;
755  int chipnum = adr >> lpddr->chipshift;
756  struct flchip *chip = &lpddr->chips[chipnum];
757 
758  mutex_lock(&chip->mutex);
759  ret = get_chip(map, chip, FL_WRITING);
760  if (ret) {
761  mutex_unlock(&chip->mutex);
762  return ret;
763  }
764 
765  send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
766 
767  ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
768  if (ret) {
769  printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770  map->name, adr, curval);
771  goto out;
772  }
773 
774 out: put_chip(map, chip);
775  mutex_unlock(&chip->mutex);
776  return ret;
777 }
778 
779 MODULE_LICENSE("GPL");
780 MODULE_AUTHOR("Alexey Korolev <[email protected]>");
781 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");