Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
memcpy_tile64.c
Go to the documentation of this file.
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation, version 2.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  * NON INFRINGEMENT. See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/string.h>
16 #include <linux/smp.h>
17 #include <linux/module.h>
18 #include <linux/uaccess.h>
19 #include <asm/fixmap.h>
20 #include <asm/kmap_types.h>
21 #include <asm/tlbflush.h>
22 #include <hv/hypervisor.h>
23 #include <arch/chip.h>
24 
25 
26 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
27 
28 /* Defined in memcpy.S */
29 extern unsigned long __memcpy_asm(void *to, const void *from, unsigned long n);
30 extern unsigned long __copy_to_user_inatomic_asm(
31  void __user *to, const void *from, unsigned long n);
32 extern unsigned long __copy_from_user_inatomic_asm(
33  void *to, const void __user *from, unsigned long n);
34 extern unsigned long __copy_from_user_zeroing_asm(
35  void *to, const void __user *from, unsigned long n);
36 
37 typedef unsigned long (*memcpy_t)(void *, const void *, unsigned long);
38 
39 /* Size above which to consider TLB games for performance */
40 #define LARGE_COPY_CUTOFF 2048
41 
42 /* Communicate to the simulator what we are trying to do. */
43 #define sim_allow_multiple_caching(b) \
44  __insn_mtspr(SPR_SIM_CONTROL, \
45  SIM_CONTROL_ALLOW_MULTIPLE_CACHING | ((b) << _SIM_CONTROL_OPERATOR_BITS))
46 
47 /*
48  * Copy memory by briefly enabling incoherent cacheline-at-a-time mode.
49  *
50  * We set up our own source and destination PTEs that we fully control.
51  * This is the only way to guarantee that we don't race with another
52  * thread that is modifying the PTE; we can't afford to try the
53  * copy_{to,from}_user() technique of catching the interrupt, since
54  * we must run with interrupts disabled to avoid the risk of some
55  * other code seeing the incoherent data in our cache. (Recall that
56  * our cache is indexed by PA, so even if the other code doesn't use
57  * our kmap_atomic virtual addresses, they'll still hit in cache using
58  * the normal VAs that aren't supposed to hit in cache.)
59  */
60 static void memcpy_multicache(void *dest, const void *source,
61  pte_t dst_pte, pte_t src_pte, int len)
62 {
63  int idx;
64  unsigned long flags, newsrc, newdst;
65  pmd_t *pmdp;
66  pte_t *ptep;
67  int type0, type1;
68  int cpu = get_cpu();
69 
70  /*
71  * Disable interrupts so that we don't recurse into memcpy()
72  * in an interrupt handler, nor accidentally reference
73  * the PA of the source from an interrupt routine. Also
74  * notify the simulator that we're playing games so we don't
75  * generate spurious coherency warnings.
76  */
77  local_irq_save(flags);
79 
80  /* Set up the new dest mapping */
81  type0 = kmap_atomic_idx_push();
82  idx = FIX_KMAP_BEGIN + (KM_TYPE_NR * cpu) + type0;
83  newdst = __fix_to_virt(idx) + ((unsigned long)dest & (PAGE_SIZE-1));
84  pmdp = pmd_offset(pud_offset(pgd_offset_k(newdst), newdst), newdst);
85  ptep = pte_offset_kernel(pmdp, newdst);
86  if (pte_val(*ptep) != pte_val(dst_pte)) {
87  set_pte(ptep, dst_pte);
89  }
90 
91  /* Set up the new source mapping */
92  type1 = kmap_atomic_idx_push();
93  idx += (type0 - type1);
94  src_pte = hv_pte_set_nc(src_pte);
95  src_pte = hv_pte_clear_writable(src_pte); /* be paranoid */
96  newsrc = __fix_to_virt(idx) + ((unsigned long)source & (PAGE_SIZE-1));
97  pmdp = pmd_offset(pud_offset(pgd_offset_k(newsrc), newsrc), newsrc);
98  ptep = pte_offset_kernel(pmdp, newsrc);
99  __set_pte(ptep, src_pte); /* set_pte() would be confused by this */
101 
102  /* Actually move the data. */
103  __memcpy_asm((void *)newdst, (const void *)newsrc, len);
104 
105  /*
106  * Remap the source as locally-cached and not OLOC'ed so that
107  * we can inval without also invaling the remote cpu's cache.
108  * This also avoids known errata with inv'ing cacheable oloc data.
109  */
110  src_pte = hv_pte_set_mode(src_pte, HV_PTE_MODE_CACHE_NO_L3);
111  src_pte = hv_pte_set_writable(src_pte); /* need write access for inv */
112  __set_pte(ptep, src_pte); /* set_pte() would be confused by this */
114 
115  /*
116  * Do the actual invalidation, covering the full L2 cache line
117  * at the end since __memcpy_asm() is somewhat aggressive.
118  */
119  __inv_buffer((void *)newsrc, len);
120 
121  /*
122  * We're done: notify the simulator that all is back to normal,
123  * and re-enable interrupts and pre-emption.
124  */
125  kmap_atomic_idx_pop();
126  kmap_atomic_idx_pop();
128  local_irq_restore(flags);
129  put_cpu();
130 }
131 
132 /*
133  * Identify large copies from remotely-cached memory, and copy them
134  * via memcpy_multicache() if they look good, otherwise fall back
135  * to the particular kind of copying passed as the memcpy_t function.
136  */
137 static unsigned long fast_copy(void *dest, const void *source, int len,
138  memcpy_t func)
139 {
140  /*
141  * Check if it's big enough to bother with. We may end up doing a
142  * small copy via TLB manipulation if we're near a page boundary,
143  * but presumably we'll make it up when we hit the second page.
144  */
145  while (len >= LARGE_COPY_CUTOFF) {
146  int copy_size, bytes_left_on_page;
147  pte_t *src_ptep, *dst_ptep;
148  pte_t src_pte, dst_pte;
149  struct page *src_page, *dst_page;
150 
151  /* Is the source page oloc'ed to a remote cpu? */
152 retry_source:
153  src_ptep = virt_to_pte(current->mm, (unsigned long)source);
154  if (src_ptep == NULL)
155  break;
156  src_pte = *src_ptep;
157  if (!hv_pte_get_present(src_pte) ||
158  !hv_pte_get_readable(src_pte) ||
159  hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3)
160  break;
161  if (get_remote_cache_cpu(src_pte) == smp_processor_id())
162  break;
163  src_page = pfn_to_page(pte_pfn(src_pte));
164  get_page(src_page);
165  if (pte_val(src_pte) != pte_val(*src_ptep)) {
166  put_page(src_page);
167  goto retry_source;
168  }
169  if (pte_huge(src_pte)) {
170  /* Adjust the PTE to correspond to a small page */
171  int pfn = pte_pfn(src_pte);
172  pfn += (((unsigned long)source & (HPAGE_SIZE-1))
173  >> PAGE_SHIFT);
174  src_pte = pfn_pte(pfn, src_pte);
175  src_pte = pte_mksmall(src_pte);
176  }
177 
178  /* Is the destination page writable? */
179 retry_dest:
180  dst_ptep = virt_to_pte(current->mm, (unsigned long)dest);
181  if (dst_ptep == NULL) {
182  put_page(src_page);
183  break;
184  }
185  dst_pte = *dst_ptep;
186  if (!hv_pte_get_present(dst_pte) ||
187  !hv_pte_get_writable(dst_pte)) {
188  put_page(src_page);
189  break;
190  }
191  dst_page = pfn_to_page(pte_pfn(dst_pte));
192  if (dst_page == src_page) {
193  /*
194  * Source and dest are on the same page; this
195  * potentially exposes us to incoherence if any
196  * part of src and dest overlap on a cache line.
197  * Just give up rather than trying to be precise.
198  */
199  put_page(src_page);
200  break;
201  }
202  get_page(dst_page);
203  if (pte_val(dst_pte) != pte_val(*dst_ptep)) {
204  put_page(dst_page);
205  goto retry_dest;
206  }
207  if (pte_huge(dst_pte)) {
208  /* Adjust the PTE to correspond to a small page */
209  int pfn = pte_pfn(dst_pte);
210  pfn += (((unsigned long)dest & (HPAGE_SIZE-1))
211  >> PAGE_SHIFT);
212  dst_pte = pfn_pte(pfn, dst_pte);
213  dst_pte = pte_mksmall(dst_pte);
214  }
215 
216  /* All looks good: create a cachable PTE and copy from it */
217  copy_size = len;
218  bytes_left_on_page =
219  PAGE_SIZE - (((int)source) & (PAGE_SIZE-1));
220  if (copy_size > bytes_left_on_page)
221  copy_size = bytes_left_on_page;
222  bytes_left_on_page =
223  PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1));
224  if (copy_size > bytes_left_on_page)
225  copy_size = bytes_left_on_page;
226  memcpy_multicache(dest, source, dst_pte, src_pte, copy_size);
227 
228  /* Release the pages */
229  put_page(dst_page);
230  put_page(src_page);
231 
232  /* Continue on the next page */
233  dest += copy_size;
234  source += copy_size;
235  len -= copy_size;
236  }
237 
238  return func(dest, source, len);
239 }
240 
241 void *memcpy(void *to, const void *from, __kernel_size_t n)
242 {
243  if (n < LARGE_COPY_CUTOFF)
244  return (void *)__memcpy_asm(to, from, n);
245  else
246  return (void *)fast_copy(to, from, n, __memcpy_asm);
247 }
248 
249 unsigned long __copy_to_user_inatomic(void __user *to, const void *from,
250  unsigned long n)
251 {
252  if (n < LARGE_COPY_CUTOFF)
253  return __copy_to_user_inatomic_asm(to, from, n);
254  else
255  return fast_copy(to, from, n, __copy_to_user_inatomic_asm);
256 }
257 
258 unsigned long __copy_from_user_inatomic(void *to, const void __user *from,
259  unsigned long n)
260 {
261  if (n < LARGE_COPY_CUTOFF)
262  return __copy_from_user_inatomic_asm(to, from, n);
263  else
264  return fast_copy(to, from, n, __copy_from_user_inatomic_asm);
265 }
266 
267 unsigned long __copy_from_user_zeroing(void *to, const void __user *from,
268  unsigned long n)
269 {
270  if (n < LARGE_COPY_CUTOFF)
271  return __copy_from_user_zeroing_asm(to, from, n);
272  else
273  return fast_copy(to, from, n, __copy_from_user_zeroing_asm);
274 }
275 
276 #endif /* !CHIP_HAS_COHERENT_LOCAL_CACHE() */