Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mtd_dataflash.c
Go to the documentation of this file.
1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  * Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/math64.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 
23 #include <linux/spi/spi.h>
24 #include <linux/spi/flash.h>
25 
26 #include <linux/mtd/mtd.h>
27 #include <linux/mtd/partitions.h>
28 
29 /*
30  * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
31  * each chip, which may be used for double buffered I/O; but this driver
32  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
33  *
34  * Sometimes DataFlash is packaged in MMC-format cards, although the
35  * MMC stack can't (yet?) distinguish between MMC and DataFlash
36  * protocols during enumeration.
37  */
38 
39 /* reads can bypass the buffers */
40 #define OP_READ_CONTINUOUS 0xE8
41 #define OP_READ_PAGE 0xD2
42 
43 /* group B requests can run even while status reports "busy" */
44 #define OP_READ_STATUS 0xD7 /* group B */
45 
46 /* move data between host and buffer */
47 #define OP_READ_BUFFER1 0xD4 /* group B */
48 #define OP_READ_BUFFER2 0xD6 /* group B */
49 #define OP_WRITE_BUFFER1 0x84 /* group B */
50 #define OP_WRITE_BUFFER2 0x87 /* group B */
51 
52 /* erasing flash */
53 #define OP_ERASE_PAGE 0x81
54 #define OP_ERASE_BLOCK 0x50
55 
56 /* move data between buffer and flash */
57 #define OP_TRANSFER_BUF1 0x53
58 #define OP_TRANSFER_BUF2 0x55
59 #define OP_MREAD_BUFFER1 0xD4
60 #define OP_MREAD_BUFFER2 0xD6
61 #define OP_MWERASE_BUFFER1 0x83
62 #define OP_MWERASE_BUFFER2 0x86
63 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
64 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
65 
66 /* write to buffer, then write-erase to flash */
67 #define OP_PROGRAM_VIA_BUF1 0x82
68 #define OP_PROGRAM_VIA_BUF2 0x85
69 
70 /* compare buffer to flash */
71 #define OP_COMPARE_BUF1 0x60
72 #define OP_COMPARE_BUF2 0x61
73 
74 /* read flash to buffer, then write-erase to flash */
75 #define OP_REWRITE_VIA_BUF1 0x58
76 #define OP_REWRITE_VIA_BUF2 0x59
77 
78 /* newer chips report JEDEC manufacturer and device IDs; chip
79  * serial number and OTP bits; and per-sector writeprotect.
80  */
81 #define OP_READ_ID 0x9F
82 #define OP_READ_SECURITY 0x77
83 #define OP_WRITE_SECURITY_REVC 0x9A
84 #define OP_WRITE_SECURITY 0x9B /* revision D */
85 
86 
87 struct dataflash {
89  char name[24];
90 
91  unsigned partitioned:1;
92 
93  unsigned short page_offset; /* offset in flash address */
94  unsigned int page_size; /* of bytes per page */
95 
96  struct mutex lock;
97  struct spi_device *spi;
98 
99  struct mtd_info mtd;
100 };
101 
102 #ifdef CONFIG_OF
103 static const struct of_device_id dataflash_dt_ids[] = {
104  { .compatible = "atmel,at45", },
105  { .compatible = "atmel,dataflash", },
106  { /* sentinel */ }
107 };
108 #else
109 #define dataflash_dt_ids NULL
110 #endif
111 
112 /* ......................................................................... */
113 
114 /*
115  * Return the status of the DataFlash device.
116  */
117 static inline int dataflash_status(struct spi_device *spi)
118 {
119  /* NOTE: at45db321c over 25 MHz wants to write
120  * a dummy byte after the opcode...
121  */
122  return spi_w8r8(spi, OP_READ_STATUS);
123 }
124 
125 /*
126  * Poll the DataFlash device until it is READY.
127  * This usually takes 5-20 msec or so; more for sector erase.
128  */
129 static int dataflash_waitready(struct spi_device *spi)
130 {
131  int status;
132 
133  for (;;) {
134  status = dataflash_status(spi);
135  if (status < 0) {
136  pr_debug("%s: status %d?\n",
137  dev_name(&spi->dev), status);
138  status = 0;
139  }
140 
141  if (status & (1 << 7)) /* RDY/nBSY */
142  return status;
143 
144  msleep(3);
145  }
146 }
147 
148 /* ......................................................................... */
149 
150 /*
151  * Erase pages of flash.
152  */
153 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
154 {
155  struct dataflash *priv = mtd->priv;
156  struct spi_device *spi = priv->spi;
157  struct spi_transfer x = { .tx_dma = 0, };
158  struct spi_message msg;
159  unsigned blocksize = priv->page_size << 3;
160  uint8_t *command;
161  uint32_t rem;
162 
163  pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
164  dev_name(&spi->dev), (long long)instr->addr,
165  (long long)instr->len);
166 
167  div_u64_rem(instr->len, priv->page_size, &rem);
168  if (rem)
169  return -EINVAL;
170  div_u64_rem(instr->addr, priv->page_size, &rem);
171  if (rem)
172  return -EINVAL;
173 
174  spi_message_init(&msg);
175 
176  x.tx_buf = command = priv->command;
177  x.len = 4;
178  spi_message_add_tail(&x, &msg);
179 
180  mutex_lock(&priv->lock);
181  while (instr->len > 0) {
182  unsigned int pageaddr;
183  int status;
184  int do_block;
185 
186  /* Calculate flash page address; use block erase (for speed) if
187  * we're at a block boundary and need to erase the whole block.
188  */
189  pageaddr = div_u64(instr->addr, priv->page_size);
190  do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
191  pageaddr = pageaddr << priv->page_offset;
192 
193  command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
194  command[1] = (uint8_t)(pageaddr >> 16);
195  command[2] = (uint8_t)(pageaddr >> 8);
196  command[3] = 0;
197 
198  pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
199  do_block ? "block" : "page",
200  command[0], command[1], command[2], command[3],
201  pageaddr);
202 
203  status = spi_sync(spi, &msg);
204  (void) dataflash_waitready(spi);
205 
206  if (status < 0) {
207  printk(KERN_ERR "%s: erase %x, err %d\n",
208  dev_name(&spi->dev), pageaddr, status);
209  /* REVISIT: can retry instr->retries times; or
210  * giveup and instr->fail_addr = instr->addr;
211  */
212  continue;
213  }
214 
215  if (do_block) {
216  instr->addr += blocksize;
217  instr->len -= blocksize;
218  } else {
219  instr->addr += priv->page_size;
220  instr->len -= priv->page_size;
221  }
222  }
223  mutex_unlock(&priv->lock);
224 
225  /* Inform MTD subsystem that erase is complete */
226  instr->state = MTD_ERASE_DONE;
227  mtd_erase_callback(instr);
228 
229  return 0;
230 }
231 
232 /*
233  * Read from the DataFlash device.
234  * from : Start offset in flash device
235  * len : Amount to read
236  * retlen : About of data actually read
237  * buf : Buffer containing the data
238  */
239 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
240  size_t *retlen, u_char *buf)
241 {
242  struct dataflash *priv = mtd->priv;
243  struct spi_transfer x[2] = { { .tx_dma = 0, }, };
244  struct spi_message msg;
245  unsigned int addr;
246  uint8_t *command;
247  int status;
248 
249  pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
250  (unsigned)from, (unsigned)(from + len));
251 
252  /* Calculate flash page/byte address */
253  addr = (((unsigned)from / priv->page_size) << priv->page_offset)
254  + ((unsigned)from % priv->page_size);
255 
256  command = priv->command;
257 
258  pr_debug("READ: (%x) %x %x %x\n",
259  command[0], command[1], command[2], command[3]);
260 
261  spi_message_init(&msg);
262 
263  x[0].tx_buf = command;
264  x[0].len = 8;
265  spi_message_add_tail(&x[0], &msg);
266 
267  x[1].rx_buf = buf;
268  x[1].len = len;
269  spi_message_add_tail(&x[1], &msg);
270 
271  mutex_lock(&priv->lock);
272 
273  /* Continuous read, max clock = f(car) which may be less than
274  * the peak rate available. Some chips support commands with
275  * fewer "don't care" bytes. Both buffers stay unchanged.
276  */
277  command[0] = OP_READ_CONTINUOUS;
278  command[1] = (uint8_t)(addr >> 16);
279  command[2] = (uint8_t)(addr >> 8);
280  command[3] = (uint8_t)(addr >> 0);
281  /* plus 4 "don't care" bytes */
282 
283  status = spi_sync(priv->spi, &msg);
284  mutex_unlock(&priv->lock);
285 
286  if (status >= 0) {
287  *retlen = msg.actual_length - 8;
288  status = 0;
289  } else
290  pr_debug("%s: read %x..%x --> %d\n",
291  dev_name(&priv->spi->dev),
292  (unsigned)from, (unsigned)(from + len),
293  status);
294  return status;
295 }
296 
297 /*
298  * Write to the DataFlash device.
299  * to : Start offset in flash device
300  * len : Amount to write
301  * retlen : Amount of data actually written
302  * buf : Buffer containing the data
303  */
304 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
305  size_t * retlen, const u_char * buf)
306 {
307  struct dataflash *priv = mtd->priv;
308  struct spi_device *spi = priv->spi;
309  struct spi_transfer x[2] = { { .tx_dma = 0, }, };
310  struct spi_message msg;
311  unsigned int pageaddr, addr, offset, writelen;
312  size_t remaining = len;
313  u_char *writebuf = (u_char *) buf;
314  int status = -EINVAL;
315  uint8_t *command;
316 
317  pr_debug("%s: write 0x%x..0x%x\n",
318  dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
319 
320  spi_message_init(&msg);
321 
322  x[0].tx_buf = command = priv->command;
323  x[0].len = 4;
324  spi_message_add_tail(&x[0], &msg);
325 
326  pageaddr = ((unsigned)to / priv->page_size);
327  offset = ((unsigned)to % priv->page_size);
328  if (offset + len > priv->page_size)
329  writelen = priv->page_size - offset;
330  else
331  writelen = len;
332 
333  mutex_lock(&priv->lock);
334  while (remaining > 0) {
335  pr_debug("write @ %i:%i len=%i\n",
336  pageaddr, offset, writelen);
337 
338  /* REVISIT:
339  * (a) each page in a sector must be rewritten at least
340  * once every 10K sibling erase/program operations.
341  * (b) for pages that are already erased, we could
342  * use WRITE+MWRITE not PROGRAM for ~30% speedup.
343  * (c) WRITE to buffer could be done while waiting for
344  * a previous MWRITE/MWERASE to complete ...
345  * (d) error handling here seems to be mostly missing.
346  *
347  * Two persistent bits per page, plus a per-sector counter,
348  * could support (a) and (b) ... we might consider using
349  * the second half of sector zero, which is just one block,
350  * to track that state. (On AT91, that sector should also
351  * support boot-from-DataFlash.)
352  */
353 
354  addr = pageaddr << priv->page_offset;
355 
356  /* (1) Maybe transfer partial page to Buffer1 */
357  if (writelen != priv->page_size) {
358  command[0] = OP_TRANSFER_BUF1;
359  command[1] = (addr & 0x00FF0000) >> 16;
360  command[2] = (addr & 0x0000FF00) >> 8;
361  command[3] = 0;
362 
363  pr_debug("TRANSFER: (%x) %x %x %x\n",
364  command[0], command[1], command[2], command[3]);
365 
366  status = spi_sync(spi, &msg);
367  if (status < 0)
368  pr_debug("%s: xfer %u -> %d\n",
369  dev_name(&spi->dev), addr, status);
370 
371  (void) dataflash_waitready(priv->spi);
372  }
373 
374  /* (2) Program full page via Buffer1 */
375  addr += offset;
376  command[0] = OP_PROGRAM_VIA_BUF1;
377  command[1] = (addr & 0x00FF0000) >> 16;
378  command[2] = (addr & 0x0000FF00) >> 8;
379  command[3] = (addr & 0x000000FF);
380 
381  pr_debug("PROGRAM: (%x) %x %x %x\n",
382  command[0], command[1], command[2], command[3]);
383 
384  x[1].tx_buf = writebuf;
385  x[1].len = writelen;
386  spi_message_add_tail(x + 1, &msg);
387  status = spi_sync(spi, &msg);
388  spi_transfer_del(x + 1);
389  if (status < 0)
390  pr_debug("%s: pgm %u/%u -> %d\n",
391  dev_name(&spi->dev), addr, writelen, status);
392 
393  (void) dataflash_waitready(priv->spi);
394 
395 
396 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
397 
398  /* (3) Compare to Buffer1 */
399  addr = pageaddr << priv->page_offset;
400  command[0] = OP_COMPARE_BUF1;
401  command[1] = (addr & 0x00FF0000) >> 16;
402  command[2] = (addr & 0x0000FF00) >> 8;
403  command[3] = 0;
404 
405  pr_debug("COMPARE: (%x) %x %x %x\n",
406  command[0], command[1], command[2], command[3]);
407 
408  status = spi_sync(spi, &msg);
409  if (status < 0)
410  pr_debug("%s: compare %u -> %d\n",
411  dev_name(&spi->dev), addr, status);
412 
413  status = dataflash_waitready(priv->spi);
414 
415  /* Check result of the compare operation */
416  if (status & (1 << 6)) {
417  printk(KERN_ERR "%s: compare page %u, err %d\n",
418  dev_name(&spi->dev), pageaddr, status);
419  remaining = 0;
420  status = -EIO;
421  break;
422  } else
423  status = 0;
424 
425 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
426 
427  remaining = remaining - writelen;
428  pageaddr++;
429  offset = 0;
430  writebuf += writelen;
431  *retlen += writelen;
432 
433  if (remaining > priv->page_size)
434  writelen = priv->page_size;
435  else
436  writelen = remaining;
437  }
438  mutex_unlock(&priv->lock);
439 
440  return status;
441 }
442 
443 /* ......................................................................... */
444 
445 #ifdef CONFIG_MTD_DATAFLASH_OTP
446 
447 static int dataflash_get_otp_info(struct mtd_info *mtd,
448  struct otp_info *info, size_t len)
449 {
450  /* Report both blocks as identical: bytes 0..64, locked.
451  * Unless the user block changed from all-ones, we can't
452  * tell whether it's still writable; so we assume it isn't.
453  */
454  info->start = 0;
455  info->length = 64;
456  info->locked = 1;
457  return sizeof(*info);
458 }
459 
460 static ssize_t otp_read(struct spi_device *spi, unsigned base,
461  uint8_t *buf, loff_t off, size_t len)
462 {
463  struct spi_message m;
464  size_t l;
465  uint8_t *scratch;
466  struct spi_transfer t;
467  int status;
468 
469  if (off > 64)
470  return -EINVAL;
471 
472  if ((off + len) > 64)
473  len = 64 - off;
474 
475  spi_message_init(&m);
476 
477  l = 4 + base + off + len;
478  scratch = kzalloc(l, GFP_KERNEL);
479  if (!scratch)
480  return -ENOMEM;
481 
482  /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
483  * IN: ignore 4 bytes, data bytes 0..N (max 127)
484  */
485  scratch[0] = OP_READ_SECURITY;
486 
487  memset(&t, 0, sizeof t);
488  t.tx_buf = scratch;
489  t.rx_buf = scratch;
490  t.len = l;
491  spi_message_add_tail(&t, &m);
492 
493  dataflash_waitready(spi);
494 
495  status = spi_sync(spi, &m);
496  if (status >= 0) {
497  memcpy(buf, scratch + 4 + base + off, len);
498  status = len;
499  }
500 
501  kfree(scratch);
502  return status;
503 }
504 
505 static int dataflash_read_fact_otp(struct mtd_info *mtd,
506  loff_t from, size_t len, size_t *retlen, u_char *buf)
507 {
508  struct dataflash *priv = mtd->priv;
509  int status;
510 
511  /* 64 bytes, from 0..63 ... start at 64 on-chip */
512  mutex_lock(&priv->lock);
513  status = otp_read(priv->spi, 64, buf, from, len);
514  mutex_unlock(&priv->lock);
515 
516  if (status < 0)
517  return status;
518  *retlen = status;
519  return 0;
520 }
521 
522 static int dataflash_read_user_otp(struct mtd_info *mtd,
523  loff_t from, size_t len, size_t *retlen, u_char *buf)
524 {
525  struct dataflash *priv = mtd->priv;
526  int status;
527 
528  /* 64 bytes, from 0..63 ... start at 0 on-chip */
529  mutex_lock(&priv->lock);
530  status = otp_read(priv->spi, 0, buf, from, len);
531  mutex_unlock(&priv->lock);
532 
533  if (status < 0)
534  return status;
535  *retlen = status;
536  return 0;
537 }
538 
539 static int dataflash_write_user_otp(struct mtd_info *mtd,
540  loff_t from, size_t len, size_t *retlen, u_char *buf)
541 {
542  struct spi_message m;
543  const size_t l = 4 + 64;
544  uint8_t *scratch;
545  struct spi_transfer t;
546  struct dataflash *priv = mtd->priv;
547  int status;
548 
549  if (len > 64)
550  return -EINVAL;
551 
552  /* Strictly speaking, we *could* truncate the write ... but
553  * let's not do that for the only write that's ever possible.
554  */
555  if ((from + len) > 64)
556  return -EINVAL;
557 
558  /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
559  * IN: ignore all
560  */
561  scratch = kzalloc(l, GFP_KERNEL);
562  if (!scratch)
563  return -ENOMEM;
564  scratch[0] = OP_WRITE_SECURITY;
565  memcpy(scratch + 4 + from, buf, len);
566 
567  spi_message_init(&m);
568 
569  memset(&t, 0, sizeof t);
570  t.tx_buf = scratch;
571  t.len = l;
572  spi_message_add_tail(&t, &m);
573 
574  /* Write the OTP bits, if they've not yet been written.
575  * This modifies SRAM buffer1.
576  */
577  mutex_lock(&priv->lock);
578  dataflash_waitready(priv->spi);
579  status = spi_sync(priv->spi, &m);
580  mutex_unlock(&priv->lock);
581 
582  kfree(scratch);
583 
584  if (status >= 0) {
585  status = 0;
586  *retlen = len;
587  }
588  return status;
589 }
590 
591 static char *otp_setup(struct mtd_info *device, char revision)
592 {
593  device->_get_fact_prot_info = dataflash_get_otp_info;
594  device->_read_fact_prot_reg = dataflash_read_fact_otp;
595  device->_get_user_prot_info = dataflash_get_otp_info;
596  device->_read_user_prot_reg = dataflash_read_user_otp;
597 
598  /* rev c parts (at45db321c and at45db1281 only!) use a
599  * different write procedure; not (yet?) implemented.
600  */
601  if (revision > 'c')
602  device->_write_user_prot_reg = dataflash_write_user_otp;
603 
604  return ", OTP";
605 }
606 
607 #else
608 
609 static char *otp_setup(struct mtd_info *device, char revision)
610 {
611  return " (OTP)";
612 }
613 
614 #endif
615 
616 /* ......................................................................... */
617 
618 /*
619  * Register DataFlash device with MTD subsystem.
620  */
621 static int __devinit
622 add_dataflash_otp(struct spi_device *spi, char *name,
623  int nr_pages, int pagesize, int pageoffset, char revision)
624 {
625  struct dataflash *priv;
626  struct mtd_info *device;
628  struct flash_platform_data *pdata = spi->dev.platform_data;
629  char *otp_tag = "";
630  int err = 0;
631 
632  priv = kzalloc(sizeof *priv, GFP_KERNEL);
633  if (!priv)
634  return -ENOMEM;
635 
636  mutex_init(&priv->lock);
637  priv->spi = spi;
638  priv->page_size = pagesize;
639  priv->page_offset = pageoffset;
640 
641  /* name must be usable with cmdlinepart */
642  sprintf(priv->name, "spi%d.%d-%s",
643  spi->master->bus_num, spi->chip_select,
644  name);
645 
646  device = &priv->mtd;
647  device->name = (pdata && pdata->name) ? pdata->name : priv->name;
648  device->size = nr_pages * pagesize;
649  device->erasesize = pagesize;
650  device->writesize = pagesize;
651  device->owner = THIS_MODULE;
652  device->type = MTD_DATAFLASH;
653  device->flags = MTD_WRITEABLE;
654  device->_erase = dataflash_erase;
655  device->_read = dataflash_read;
656  device->_write = dataflash_write;
657  device->priv = priv;
658 
659  device->dev.parent = &spi->dev;
660 
661  if (revision >= 'c')
662  otp_tag = otp_setup(device, revision);
663 
664  dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
665  name, (long long)((device->size + 1023) >> 10),
666  pagesize, otp_tag);
667  dev_set_drvdata(&spi->dev, priv);
668 
669  ppdata.of_node = spi->dev.of_node;
670  err = mtd_device_parse_register(device, NULL, &ppdata,
671  pdata ? pdata->parts : NULL,
672  pdata ? pdata->nr_parts : 0);
673 
674  if (!err)
675  return 0;
676 
677  dev_set_drvdata(&spi->dev, NULL);
678  kfree(priv);
679  return err;
680 }
681 
682 static inline int __devinit
683 add_dataflash(struct spi_device *spi, char *name,
684  int nr_pages, int pagesize, int pageoffset)
685 {
686  return add_dataflash_otp(spi, name, nr_pages, pagesize,
687  pageoffset, 0);
688 }
689 
690 struct flash_info {
691  char *name;
692 
693  /* JEDEC id has a high byte of zero plus three data bytes:
694  * the manufacturer id, then a two byte device id.
695  */
697 
698  /* The size listed here is what works with OP_ERASE_PAGE. */
699  unsigned nr_pages;
702 
704 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
705 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
706 };
707 
708 static struct flash_info __devinitdata dataflash_data [] = {
709 
710  /*
711  * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
712  * one with IS_POW2PS and the other without. The entry with the
713  * non-2^N byte page size can't name exact chip revisions without
714  * losing backwards compatibility for cmdlinepart.
715  *
716  * These newer chips also support 128-byte security registers (with
717  * 64 bytes one-time-programmable) and software write-protection.
718  */
719  { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
720  { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
721 
722  { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
723  { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
724 
725  { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
726  { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
727 
728  { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
729  { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
730 
731  { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
732  { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
733 
734  { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
735 
736  { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
737  { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
738 
739  { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
740  { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
741 };
742 
743 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
744 {
745  int tmp;
747  uint8_t id[3];
748  uint32_t jedec;
749  struct flash_info *info;
750  int status;
751 
752  /* JEDEC also defines an optional "extended device information"
753  * string for after vendor-specific data, after the three bytes
754  * we use here. Supporting some chips might require using it.
755  *
756  * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
757  * That's not an error; only rev C and newer chips handle it, and
758  * only Atmel sells these chips.
759  */
760  tmp = spi_write_then_read(spi, &code, 1, id, 3);
761  if (tmp < 0) {
762  pr_debug("%s: error %d reading JEDEC ID\n",
763  dev_name(&spi->dev), tmp);
764  return ERR_PTR(tmp);
765  }
766  if (id[0] != 0x1f)
767  return NULL;
768 
769  jedec = id[0];
770  jedec = jedec << 8;
771  jedec |= id[1];
772  jedec = jedec << 8;
773  jedec |= id[2];
774 
775  for (tmp = 0, info = dataflash_data;
776  tmp < ARRAY_SIZE(dataflash_data);
777  tmp++, info++) {
778  if (info->jedec_id == jedec) {
779  pr_debug("%s: OTP, sector protect%s\n",
780  dev_name(&spi->dev),
781  (info->flags & SUP_POW2PS)
782  ? ", binary pagesize" : ""
783  );
784  if (info->flags & SUP_POW2PS) {
785  status = dataflash_status(spi);
786  if (status < 0) {
787  pr_debug("%s: status error %d\n",
788  dev_name(&spi->dev), status);
789  return ERR_PTR(status);
790  }
791  if (status & 0x1) {
792  if (info->flags & IS_POW2PS)
793  return info;
794  } else {
795  if (!(info->flags & IS_POW2PS))
796  return info;
797  }
798  } else
799  return info;
800  }
801  }
802 
803  /*
804  * Treat other chips as errors ... we won't know the right page
805  * size (it might be binary) even when we can tell which density
806  * class is involved (legacy chip id scheme).
807  */
808  dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
809  return ERR_PTR(-ENODEV);
810 }
811 
812 /*
813  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
814  * or else the ID code embedded in the status bits:
815  *
816  * Device Density ID code #Pages PageSize Offset
817  * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
818  * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
819  * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
820  * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
821  * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
822  * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
823  * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
824  * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
825  */
826 static int __devinit dataflash_probe(struct spi_device *spi)
827 {
828  int status;
829  struct flash_info *info;
830 
831  /*
832  * Try to detect dataflash by JEDEC ID.
833  * If it succeeds we know we have either a C or D part.
834  * D will support power of 2 pagesize option.
835  * Both support the security register, though with different
836  * write procedures.
837  */
838  info = jedec_probe(spi);
839  if (IS_ERR(info))
840  return PTR_ERR(info);
841  if (info != NULL)
842  return add_dataflash_otp(spi, info->name, info->nr_pages,
843  info->pagesize, info->pageoffset,
844  (info->flags & SUP_POW2PS) ? 'd' : 'c');
845 
846  /*
847  * Older chips support only legacy commands, identifing
848  * capacity using bits in the status byte.
849  */
850  status = dataflash_status(spi);
851  if (status <= 0 || status == 0xff) {
852  pr_debug("%s: status error %d\n",
853  dev_name(&spi->dev), status);
854  if (status == 0 || status == 0xff)
855  status = -ENODEV;
856  return status;
857  }
858 
859  /* if there's a device there, assume it's dataflash.
860  * board setup should have set spi->max_speed_max to
861  * match f(car) for continuous reads, mode 0 or 3.
862  */
863  switch (status & 0x3c) {
864  case 0x0c: /* 0 0 1 1 x x */
865  status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
866  break;
867  case 0x14: /* 0 1 0 1 x x */
868  status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
869  break;
870  case 0x1c: /* 0 1 1 1 x x */
871  status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
872  break;
873  case 0x24: /* 1 0 0 1 x x */
874  status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
875  break;
876  case 0x2c: /* 1 0 1 1 x x */
877  status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
878  break;
879  case 0x34: /* 1 1 0 1 x x */
880  status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
881  break;
882  case 0x38: /* 1 1 1 x x x */
883  case 0x3c:
884  status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
885  break;
886  /* obsolete AT45DB1282 not (yet?) supported */
887  default:
888  pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev),
889  status & 0x3c);
890  status = -ENODEV;
891  }
892 
893  if (status < 0)
894  pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
895  status);
896 
897  return status;
898 }
899 
900 static int __devexit dataflash_remove(struct spi_device *spi)
901 {
902  struct dataflash *flash = dev_get_drvdata(&spi->dev);
903  int status;
904 
905  pr_debug("%s: remove\n", dev_name(&spi->dev));
906 
907  status = mtd_device_unregister(&flash->mtd);
908  if (status == 0) {
909  dev_set_drvdata(&spi->dev, NULL);
910  kfree(flash);
911  }
912  return status;
913 }
914 
915 static struct spi_driver dataflash_driver = {
916  .driver = {
917  .name = "mtd_dataflash",
918  .owner = THIS_MODULE,
919  .of_match_table = dataflash_dt_ids,
920  },
921 
922  .probe = dataflash_probe,
923  .remove = __devexit_p(dataflash_remove),
924 
925  /* FIXME: investigate suspend and resume... */
926 };
927 
928 module_spi_driver(dataflash_driver);
929 
930 MODULE_LICENSE("GPL");
931 MODULE_AUTHOR("Andrew Victor, David Brownell");
932 MODULE_DESCRIPTION("MTD DataFlash driver");
933 MODULE_ALIAS("spi:mtd_dataflash");