Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mtdcore.c
Go to the documentation of this file.
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <[email protected]>
6  * Copyright © 2006 Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/partitions.h>
42 
43 #include "mtdcore.h"
44 /*
45  * backing device capabilities for non-mappable devices (such as NAND flash)
46  * - permits private mappings, copies are taken of the data
47  */
48 static struct backing_dev_info mtd_bdi_unmappable = {
49  .capabilities = BDI_CAP_MAP_COPY,
50 };
51 
52 /*
53  * backing device capabilities for R/O mappable devices (such as ROM)
54  * - permits private mappings, copies are taken of the data
55  * - permits non-writable shared mappings
56  */
57 static struct backing_dev_info mtd_bdi_ro_mappable = {
58  .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
60 };
61 
62 /*
63  * backing device capabilities for writable mappable devices (such as RAM)
64  * - permits private mappings, copies are taken of the data
65  * - permits non-writable shared mappings
66  */
67 static struct backing_dev_info mtd_bdi_rw_mappable = {
68  .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 };
72 
73 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
74 static int mtd_cls_resume(struct device *dev);
75 
76 static struct class mtd_class = {
77  .name = "mtd",
78  .owner = THIS_MODULE,
79  .suspend = mtd_cls_suspend,
80  .resume = mtd_cls_resume,
81 };
82 
83 static DEFINE_IDR(mtd_idr);
84 
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86  should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 
91 {
92  return idr_get_next(&mtd_idr, &i);
93 }
95 
96 static LIST_HEAD(mtd_notifiers);
97 
98 
99 #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
100 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
101 #else
102 #define MTD_DEVT(index) 0
103 #endif
104 
105 /* REVISIT once MTD uses the driver model better, whoever allocates
106  * the mtd_info will probably want to use the release() hook...
107  */
108 static void mtd_release(struct device *dev)
109 {
110  struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
111  dev_t index = MTD_DEVT(mtd->index);
112 
113  /* remove /dev/mtdXro node if needed */
114  if (index)
115  device_destroy(&mtd_class, index + 1);
116 }
117 
118 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
119 {
120  struct mtd_info *mtd = dev_get_drvdata(dev);
121 
122  return mtd ? mtd_suspend(mtd) : 0;
123 }
124 
125 static int mtd_cls_resume(struct device *dev)
126 {
127  struct mtd_info *mtd = dev_get_drvdata(dev);
128 
129  if (mtd)
130  mtd_resume(mtd);
131  return 0;
132 }
133 
134 static ssize_t mtd_type_show(struct device *dev,
135  struct device_attribute *attr, char *buf)
136 {
137  struct mtd_info *mtd = dev_get_drvdata(dev);
138  char *type;
139 
140  switch (mtd->type) {
141  case MTD_ABSENT:
142  type = "absent";
143  break;
144  case MTD_RAM:
145  type = "ram";
146  break;
147  case MTD_ROM:
148  type = "rom";
149  break;
150  case MTD_NORFLASH:
151  type = "nor";
152  break;
153  case MTD_NANDFLASH:
154  type = "nand";
155  break;
156  case MTD_DATAFLASH:
157  type = "dataflash";
158  break;
159  case MTD_UBIVOLUME:
160  type = "ubi";
161  break;
162  default:
163  type = "unknown";
164  }
165 
166  return snprintf(buf, PAGE_SIZE, "%s\n", type);
167 }
168 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
169 
170 static ssize_t mtd_flags_show(struct device *dev,
171  struct device_attribute *attr, char *buf)
172 {
173  struct mtd_info *mtd = dev_get_drvdata(dev);
174 
175  return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
176 
177 }
178 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
179 
180 static ssize_t mtd_size_show(struct device *dev,
181  struct device_attribute *attr, char *buf)
182 {
183  struct mtd_info *mtd = dev_get_drvdata(dev);
184 
185  return snprintf(buf, PAGE_SIZE, "%llu\n",
186  (unsigned long long)mtd->size);
187 
188 }
189 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
190 
191 static ssize_t mtd_erasesize_show(struct device *dev,
192  struct device_attribute *attr, char *buf)
193 {
194  struct mtd_info *mtd = dev_get_drvdata(dev);
195 
196  return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
197 
198 }
199 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
200 
201 static ssize_t mtd_writesize_show(struct device *dev,
202  struct device_attribute *attr, char *buf)
203 {
204  struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206  return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
207 
208 }
209 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
210 
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212  struct device_attribute *attr, char *buf)
213 {
214  struct mtd_info *mtd = dev_get_drvdata(dev);
215  unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216 
217  return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
218 
219 }
220 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
221 
222 static ssize_t mtd_oobsize_show(struct device *dev,
223  struct device_attribute *attr, char *buf)
224 {
225  struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227  return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
228 
229 }
230 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
231 
232 static ssize_t mtd_numeraseregions_show(struct device *dev,
233  struct device_attribute *attr, char *buf)
234 {
235  struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237  return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
238 
239 }
240 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
241  NULL);
242 
243 static ssize_t mtd_name_show(struct device *dev,
244  struct device_attribute *attr, char *buf)
245 {
246  struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248  return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
249 
250 }
251 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
252 
253 static ssize_t mtd_ecc_strength_show(struct device *dev,
254  struct device_attribute *attr, char *buf)
255 {
256  struct mtd_info *mtd = dev_get_drvdata(dev);
257 
258  return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
259 }
260 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
261 
262 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
263  struct device_attribute *attr,
264  char *buf)
265 {
266  struct mtd_info *mtd = dev_get_drvdata(dev);
267 
268  return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
269 }
270 
271 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
272  struct device_attribute *attr,
273  const char *buf, size_t count)
274 {
275  struct mtd_info *mtd = dev_get_drvdata(dev);
276  unsigned int bitflip_threshold;
277  int retval;
278 
279  retval = kstrtouint(buf, 0, &bitflip_threshold);
280  if (retval)
281  return retval;
282 
284  return count;
285 }
286 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
287  mtd_bitflip_threshold_show,
288  mtd_bitflip_threshold_store);
289 
290 static struct attribute *mtd_attrs[] = {
291  &dev_attr_type.attr,
292  &dev_attr_flags.attr,
293  &dev_attr_size.attr,
294  &dev_attr_erasesize.attr,
295  &dev_attr_writesize.attr,
296  &dev_attr_subpagesize.attr,
297  &dev_attr_oobsize.attr,
298  &dev_attr_numeraseregions.attr,
299  &dev_attr_name.attr,
300  &dev_attr_ecc_strength.attr,
301  &dev_attr_bitflip_threshold.attr,
302  NULL,
303 };
304 
305 static struct attribute_group mtd_group = {
306  .attrs = mtd_attrs,
307 };
308 
309 static const struct attribute_group *mtd_groups[] = {
310  &mtd_group,
311  NULL,
312 };
313 
314 static struct device_type mtd_devtype = {
315  .name = "mtd",
316  .groups = mtd_groups,
317  .release = mtd_release,
318 };
319 
330 int add_mtd_device(struct mtd_info *mtd)
331 {
332  struct mtd_notifier *not;
333  int i, error;
334 
335  if (!mtd->backing_dev_info) {
336  switch (mtd->type) {
337  case MTD_RAM:
338  mtd->backing_dev_info = &mtd_bdi_rw_mappable;
339  break;
340  case MTD_ROM:
341  mtd->backing_dev_info = &mtd_bdi_ro_mappable;
342  break;
343  default:
344  mtd->backing_dev_info = &mtd_bdi_unmappable;
345  break;
346  }
347  }
348 
349  BUG_ON(mtd->writesize == 0);
351 
352  do {
353  if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
354  goto fail_locked;
355  error = idr_get_new(&mtd_idr, mtd, &i);
356  } while (error == -EAGAIN);
357 
358  if (error)
359  goto fail_locked;
360 
361  mtd->index = i;
362  mtd->usecount = 0;
363 
364  /* default value if not set by driver */
365  if (mtd->bitflip_threshold == 0)
366  mtd->bitflip_threshold = mtd->ecc_strength;
367 
368  if (is_power_of_2(mtd->erasesize))
369  mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
370  else
371  mtd->erasesize_shift = 0;
372 
373  if (is_power_of_2(mtd->writesize))
374  mtd->writesize_shift = ffs(mtd->writesize) - 1;
375  else
376  mtd->writesize_shift = 0;
377 
378  mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
379  mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
380 
381  /* Some chips always power up locked. Unlock them now */
382  if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
383  error = mtd_unlock(mtd, 0, mtd->size);
384  if (error && error != -EOPNOTSUPP)
386  "%s: unlock failed, writes may not work\n",
387  mtd->name);
388  }
389 
390  /* Caller should have set dev.parent to match the
391  * physical device.
392  */
393  mtd->dev.type = &mtd_devtype;
394  mtd->dev.class = &mtd_class;
395  mtd->dev.devt = MTD_DEVT(i);
396  dev_set_name(&mtd->dev, "mtd%d", i);
397  dev_set_drvdata(&mtd->dev, mtd);
398  if (device_register(&mtd->dev) != 0)
399  goto fail_added;
400 
401  if (MTD_DEVT(i))
402  device_create(&mtd_class, mtd->dev.parent,
403  MTD_DEVT(i) + 1,
404  NULL, "mtd%dro", i);
405 
406  pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
407  /* No need to get a refcount on the module containing
408  the notifier, since we hold the mtd_table_mutex */
409  list_for_each_entry(not, &mtd_notifiers, list)
410  not->add(mtd);
411 
413  /* We _know_ we aren't being removed, because
414  our caller is still holding us here. So none
415  of this try_ nonsense, and no bitching about it
416  either. :) */
417  __module_get(THIS_MODULE);
418  return 0;
419 
420 fail_added:
421  idr_remove(&mtd_idr, i);
422 fail_locked:
424  return 1;
425 }
426 
437 int del_mtd_device(struct mtd_info *mtd)
438 {
439  int ret;
440  struct mtd_notifier *not;
441 
443 
444  if (idr_find(&mtd_idr, mtd->index) != mtd) {
445  ret = -ENODEV;
446  goto out_error;
447  }
448 
449  /* No need to get a refcount on the module containing
450  the notifier, since we hold the mtd_table_mutex */
451  list_for_each_entry(not, &mtd_notifiers, list)
452  not->remove(mtd);
453 
454  if (mtd->usecount) {
455  printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
456  mtd->index, mtd->name, mtd->usecount);
457  ret = -EBUSY;
458  } else {
459  device_unregister(&mtd->dev);
460 
461  idr_remove(&mtd_idr, mtd->index);
462 
463  module_put(THIS_MODULE);
464  ret = 0;
465  }
466 
467 out_error:
469  return ret;
470 }
471 
500 int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
501  struct mtd_part_parser_data *parser_data,
502  const struct mtd_partition *parts,
503  int nr_parts)
504 {
505  int err;
506  struct mtd_partition *real_parts;
507 
508  err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
509  if (err <= 0 && nr_parts && parts) {
510  real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
511  GFP_KERNEL);
512  if (!real_parts)
513  err = -ENOMEM;
514  else
515  err = nr_parts;
516  }
517 
518  if (err > 0) {
519  err = add_mtd_partitions(mtd, real_parts, err);
520  kfree(real_parts);
521  } else if (err == 0) {
522  err = add_mtd_device(mtd);
523  if (err == 1)
524  err = -ENODEV;
525  }
526 
527  return err;
528 }
530 
537 int mtd_device_unregister(struct mtd_info *master)
538 {
539  int err;
540 
541  err = del_mtd_partitions(master);
542  if (err)
543  return err;
544 
545  if (!device_is_registered(&master->dev))
546  return 0;
547 
548  return del_mtd_device(master);
549 }
551 
560 void register_mtd_user (struct mtd_notifier *new)
561 {
562  struct mtd_info *mtd;
563 
565 
566  list_add(&new->list, &mtd_notifiers);
567 
568  __module_get(THIS_MODULE);
569 
571  new->add(mtd);
572 
574 }
576 
587 {
588  struct mtd_info *mtd;
589 
591 
592  module_put(THIS_MODULE);
593 
595  old->remove(mtd);
596 
597  list_del(&old->list);
599  return 0;
600 }
602 
614 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
615 {
616  struct mtd_info *ret = NULL, *other;
617  int err = -ENODEV;
618 
620 
621  if (num == -1) {
622  mtd_for_each_device(other) {
623  if (other == mtd) {
624  ret = mtd;
625  break;
626  }
627  }
628  } else if (num >= 0) {
629  ret = idr_find(&mtd_idr, num);
630  if (mtd && mtd != ret)
631  ret = NULL;
632  }
633 
634  if (!ret) {
635  ret = ERR_PTR(err);
636  goto out;
637  }
638 
639  err = __get_mtd_device(ret);
640  if (err)
641  ret = ERR_PTR(err);
642 out:
644  return ret;
645 }
647 
648 
649 int __get_mtd_device(struct mtd_info *mtd)
650 {
651  int err;
652 
653  if (!try_module_get(mtd->owner))
654  return -ENODEV;
655 
656  if (mtd->_get_device) {
657  err = mtd->_get_device(mtd);
658 
659  if (err) {
660  module_put(mtd->owner);
661  return err;
662  }
663  }
664  mtd->usecount++;
665  return 0;
666 }
668 
677 struct mtd_info *get_mtd_device_nm(const char *name)
678 {
679  int err = -ENODEV;
680  struct mtd_info *mtd = NULL, *other;
681 
683 
684  mtd_for_each_device(other) {
685  if (!strcmp(name, other->name)) {
686  mtd = other;
687  break;
688  }
689  }
690 
691  if (!mtd)
692  goto out_unlock;
693 
694  err = __get_mtd_device(mtd);
695  if (err)
696  goto out_unlock;
697 
699  return mtd;
700 
701 out_unlock:
703  return ERR_PTR(err);
704 }
706 
707 void put_mtd_device(struct mtd_info *mtd)
708 {
710  __put_mtd_device(mtd);
712 
713 }
715 
716 void __put_mtd_device(struct mtd_info *mtd)
717 {
718  --mtd->usecount;
719  BUG_ON(mtd->usecount < 0);
720 
721  if (mtd->_put_device)
722  mtd->_put_device(mtd);
723 
724  module_put(mtd->owner);
725 }
727 
728 /*
729  * Erase is an asynchronous operation. Device drivers are supposed
730  * to call instr->callback() whenever the operation completes, even
731  * if it completes with a failure.
732  * Callers are supposed to pass a callback function and wait for it
733  * to be called before writing to the block.
734  */
735 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
736 {
737  if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
738  return -EINVAL;
739  if (!(mtd->flags & MTD_WRITEABLE))
740  return -EROFS;
742  if (!instr->len) {
743  instr->state = MTD_ERASE_DONE;
744  mtd_erase_callback(instr);
745  return 0;
746  }
747  return mtd->_erase(mtd, instr);
748 }
750 
751 /*
752  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
753  */
754 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
755  void **virt, resource_size_t *phys)
756 {
757  *retlen = 0;
758  *virt = NULL;
759  if (phys)
760  *phys = 0;
761  if (!mtd->_point)
762  return -EOPNOTSUPP;
763  if (from < 0 || from > mtd->size || len > mtd->size - from)
764  return -EINVAL;
765  if (!len)
766  return 0;
767  return mtd->_point(mtd, from, len, retlen, virt, phys);
768 }
770 
771 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
772 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
773 {
774  if (!mtd->_point)
775  return -EOPNOTSUPP;
776  if (from < 0 || from > mtd->size || len > mtd->size - from)
777  return -EINVAL;
778  if (!len)
779  return 0;
780  return mtd->_unpoint(mtd, from, len);
781 }
783 
784 /*
785  * Allow NOMMU mmap() to directly map the device (if not NULL)
786  * - return the address to which the offset maps
787  * - return -ENOSYS to indicate refusal to do the mapping
788  */
789 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
790  unsigned long offset, unsigned long flags)
791 {
792  if (!mtd->_get_unmapped_area)
793  return -EOPNOTSUPP;
794  if (offset > mtd->size || len > mtd->size - offset)
795  return -EINVAL;
796  return mtd->_get_unmapped_area(mtd, len, offset, flags);
797 }
799 
800 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
801  u_char *buf)
802 {
803  int ret_code;
804  *retlen = 0;
805  if (from < 0 || from > mtd->size || len > mtd->size - from)
806  return -EINVAL;
807  if (!len)
808  return 0;
809 
810  /*
811  * In the absence of an error, drivers return a non-negative integer
812  * representing the maximum number of bitflips that were corrected on
813  * any one ecc region (if applicable; zero otherwise).
814  */
815  ret_code = mtd->_read(mtd, from, len, retlen, buf);
816  if (unlikely(ret_code < 0))
817  return ret_code;
818  if (mtd->ecc_strength == 0)
819  return 0; /* device lacks ecc */
820  return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
821 }
823 
824 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
825  const u_char *buf)
826 {
827  *retlen = 0;
828  if (to < 0 || to > mtd->size || len > mtd->size - to)
829  return -EINVAL;
830  if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
831  return -EROFS;
832  if (!len)
833  return 0;
834  return mtd->_write(mtd, to, len, retlen, buf);
835 }
837 
838 /*
839  * In blackbox flight recorder like scenarios we want to make successful writes
840  * in interrupt context. panic_write() is only intended to be called when its
841  * known the kernel is about to panic and we need the write to succeed. Since
842  * the kernel is not going to be running for much longer, this function can
843  * break locks and delay to ensure the write succeeds (but not sleep).
844  */
845 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
846  const u_char *buf)
847 {
848  *retlen = 0;
849  if (!mtd->_panic_write)
850  return -EOPNOTSUPP;
851  if (to < 0 || to > mtd->size || len > mtd->size - to)
852  return -EINVAL;
853  if (!(mtd->flags & MTD_WRITEABLE))
854  return -EROFS;
855  if (!len)
856  return 0;
857  return mtd->_panic_write(mtd, to, len, retlen, buf);
858 }
860 
861 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
862 {
863  int ret_code;
864  ops->retlen = ops->oobretlen = 0;
865  if (!mtd->_read_oob)
866  return -EOPNOTSUPP;
867  /*
868  * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
869  * similar to mtd->_read(), returning a non-negative integer
870  * representing max bitflips. In other cases, mtd->_read_oob() may
871  * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
872  */
873  ret_code = mtd->_read_oob(mtd, from, ops);
874  if (unlikely(ret_code < 0))
875  return ret_code;
876  if (mtd->ecc_strength == 0)
877  return 0; /* device lacks ecc */
878  return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
879 }
881 
882 /*
883  * Method to access the protection register area, present in some flash
884  * devices. The user data is one time programmable but the factory data is read
885  * only.
886  */
887 int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
888  size_t len)
889 {
890  if (!mtd->_get_fact_prot_info)
891  return -EOPNOTSUPP;
892  if (!len)
893  return 0;
894  return mtd->_get_fact_prot_info(mtd, buf, len);
895 }
897 
898 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
899  size_t *retlen, u_char *buf)
900 {
901  *retlen = 0;
902  if (!mtd->_read_fact_prot_reg)
903  return -EOPNOTSUPP;
904  if (!len)
905  return 0;
906  return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
907 }
909 
910 int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
911  size_t len)
912 {
913  if (!mtd->_get_user_prot_info)
914  return -EOPNOTSUPP;
915  if (!len)
916  return 0;
917  return mtd->_get_user_prot_info(mtd, buf, len);
918 }
920 
921 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
922  size_t *retlen, u_char *buf)
923 {
924  *retlen = 0;
925  if (!mtd->_read_user_prot_reg)
926  return -EOPNOTSUPP;
927  if (!len)
928  return 0;
929  return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
930 }
932 
933 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
934  size_t *retlen, u_char *buf)
935 {
936  *retlen = 0;
937  if (!mtd->_write_user_prot_reg)
938  return -EOPNOTSUPP;
939  if (!len)
940  return 0;
941  return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
942 }
944 
945 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
946 {
947  if (!mtd->_lock_user_prot_reg)
948  return -EOPNOTSUPP;
949  if (!len)
950  return 0;
951  return mtd->_lock_user_prot_reg(mtd, from, len);
952 }
954 
955 /* Chip-supported device locking */
956 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
957 {
958  if (!mtd->_lock)
959  return -EOPNOTSUPP;
960  if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
961  return -EINVAL;
962  if (!len)
963  return 0;
964  return mtd->_lock(mtd, ofs, len);
965 }
967 
968 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
969 {
970  if (!mtd->_unlock)
971  return -EOPNOTSUPP;
972  if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
973  return -EINVAL;
974  if (!len)
975  return 0;
976  return mtd->_unlock(mtd, ofs, len);
977 }
979 
980 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
981 {
982  if (!mtd->_is_locked)
983  return -EOPNOTSUPP;
984  if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
985  return -EINVAL;
986  if (!len)
987  return 0;
988  return mtd->_is_locked(mtd, ofs, len);
989 }
991 
992 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
993 {
994  if (!mtd->_block_isbad)
995  return 0;
996  if (ofs < 0 || ofs > mtd->size)
997  return -EINVAL;
998  return mtd->_block_isbad(mtd, ofs);
999 }
1001 
1002 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1003 {
1004  if (!mtd->_block_markbad)
1005  return -EOPNOTSUPP;
1006  if (ofs < 0 || ofs > mtd->size)
1007  return -EINVAL;
1008  if (!(mtd->flags & MTD_WRITEABLE))
1009  return -EROFS;
1010  return mtd->_block_markbad(mtd, ofs);
1011 }
1013 
1014 /*
1015  * default_mtd_writev - the default writev method
1016  * @mtd: mtd device description object pointer
1017  * @vecs: the vectors to write
1018  * @count: count of vectors in @vecs
1019  * @to: the MTD device offset to write to
1020  * @retlen: on exit contains the count of bytes written to the MTD device.
1021  *
1022  * This function returns zero in case of success and a negative error code in
1023  * case of failure.
1024  */
1025 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1026  unsigned long count, loff_t to, size_t *retlen)
1027 {
1028  unsigned long i;
1029  size_t totlen = 0, thislen;
1030  int ret = 0;
1031 
1032  for (i = 0; i < count; i++) {
1033  if (!vecs[i].iov_len)
1034  continue;
1035  ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1036  vecs[i].iov_base);
1037  totlen += thislen;
1038  if (ret || thislen != vecs[i].iov_len)
1039  break;
1040  to += vecs[i].iov_len;
1041  }
1042  *retlen = totlen;
1043  return ret;
1044 }
1045 
1046 /*
1047  * mtd_writev - the vector-based MTD write method
1048  * @mtd: mtd device description object pointer
1049  * @vecs: the vectors to write
1050  * @count: count of vectors in @vecs
1051  * @to: the MTD device offset to write to
1052  * @retlen: on exit contains the count of bytes written to the MTD device.
1053  *
1054  * This function returns zero in case of success and a negative error code in
1055  * case of failure.
1056  */
1057 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1058  unsigned long count, loff_t to, size_t *retlen)
1059 {
1060  *retlen = 0;
1061  if (!(mtd->flags & MTD_WRITEABLE))
1062  return -EROFS;
1063  if (!mtd->_writev)
1064  return default_mtd_writev(mtd, vecs, count, to, retlen);
1065  return mtd->_writev(mtd, vecs, count, to, retlen);
1066 }
1068 
1093 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1094 {
1097  size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1098  void *kbuf;
1099 
1100  *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1101 
1102  while (*size > min_alloc) {
1103  kbuf = kmalloc(*size, flags);
1104  if (kbuf)
1105  return kbuf;
1106 
1107  *size >>= 1;
1108  *size = ALIGN(*size, mtd->writesize);
1109  }
1110 
1111  /*
1112  * For the last resort allocation allow 'kmalloc()' to do all sorts of
1113  * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1114  */
1115  return kmalloc(*size, GFP_KERNEL);
1116 }
1118 
1119 #ifdef CONFIG_PROC_FS
1120 
1121 /*====================================================================*/
1122 /* Support for /proc/mtd */
1123 
1124 static struct proc_dir_entry *proc_mtd;
1125 
1126 static int mtd_proc_show(struct seq_file *m, void *v)
1127 {
1128  struct mtd_info *mtd;
1129 
1130  seq_puts(m, "dev: size erasesize name\n");
1131  mutex_lock(&mtd_table_mutex);
1132  mtd_for_each_device(mtd) {
1133  seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1134  mtd->index, (unsigned long long)mtd->size,
1135  mtd->erasesize, mtd->name);
1136  }
1137  mutex_unlock(&mtd_table_mutex);
1138  return 0;
1139 }
1140 
1141 static int mtd_proc_open(struct inode *inode, struct file *file)
1142 {
1143  return single_open(file, mtd_proc_show, NULL);
1144 }
1145 
1146 static const struct file_operations mtd_proc_ops = {
1147  .open = mtd_proc_open,
1148  .read = seq_read,
1149  .llseek = seq_lseek,
1150  .release = single_release,
1151 };
1152 #endif /* CONFIG_PROC_FS */
1153 
1154 /*====================================================================*/
1155 /* Init code */
1156 
1157 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1158 {
1159  int ret;
1160 
1161  ret = bdi_init(bdi);
1162  if (!ret)
1163  ret = bdi_register(bdi, NULL, name);
1164 
1165  if (ret)
1166  bdi_destroy(bdi);
1167 
1168  return ret;
1169 }
1170 
1171 static int __init init_mtd(void)
1172 {
1173  int ret;
1174 
1175  ret = class_register(&mtd_class);
1176  if (ret)
1177  goto err_reg;
1178 
1179  ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1180  if (ret)
1181  goto err_bdi1;
1182 
1183  ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1184  if (ret)
1185  goto err_bdi2;
1186 
1187  ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1188  if (ret)
1189  goto err_bdi3;
1190 
1191 #ifdef CONFIG_PROC_FS
1192  proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1193 #endif /* CONFIG_PROC_FS */
1194  return 0;
1195 
1196 err_bdi3:
1197  bdi_destroy(&mtd_bdi_ro_mappable);
1198 err_bdi2:
1199  bdi_destroy(&mtd_bdi_unmappable);
1200 err_bdi1:
1201  class_unregister(&mtd_class);
1202 err_reg:
1203  pr_err("Error registering mtd class or bdi: %d\n", ret);
1204  return ret;
1205 }
1206 
1207 static void __exit cleanup_mtd(void)
1208 {
1209 #ifdef CONFIG_PROC_FS
1210  if (proc_mtd)
1211  remove_proc_entry( "mtd", NULL);
1212 #endif /* CONFIG_PROC_FS */
1213  class_unregister(&mtd_class);
1214  bdi_destroy(&mtd_bdi_unmappable);
1215  bdi_destroy(&mtd_bdi_ro_mappable);
1216  bdi_destroy(&mtd_bdi_rw_mappable);
1217 }
1218 
1219 module_init(init_mtd);
1220 module_exit(cleanup_mtd);
1221 
1222 MODULE_LICENSE("GPL");
1223 MODULE_AUTHOR("David Woodhouse <[email protected]>");
1224 MODULE_DESCRIPTION("Core MTD registration and access routines");