Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mtdpart.c
Go to the documentation of this file.
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <[email protected]>
5  * Copyright © 2002 Thomas Gleixner <[email protected]>
6  * Copyright © 2000-2010 David Woodhouse <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 
34 #include "mtdcore.h"
35 
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39 
40 /* Our partition node structure */
41 struct mtd_part {
42  struct mtd_info mtd;
43  struct mtd_info *master;
45  struct list_head list;
46 };
47 
48 /*
49  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50  * the pointer to that structure with this macro.
51  */
52 #define PART(x) ((struct mtd_part *)(x))
53 
54 
55 /*
56  * MTD methods which simply translate the effective address and pass through
57  * to the _real_ device.
58  */
59 
60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61  size_t *retlen, u_char *buf)
62 {
63  struct mtd_part *part = PART(mtd);
64  struct mtd_ecc_stats stats;
65  int res;
66 
67  stats = part->master->ecc_stats;
68  res = part->master->_read(part->master, from + part->offset, len,
69  retlen, buf);
70  if (unlikely(mtd_is_eccerr(res)))
71  mtd->ecc_stats.failed +=
72  part->master->ecc_stats.failed - stats.failed;
73  else
74  mtd->ecc_stats.corrected +=
75  part->master->ecc_stats.corrected - stats.corrected;
76  return res;
77 }
78 
79 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
80  size_t *retlen, void **virt, resource_size_t *phys)
81 {
82  struct mtd_part *part = PART(mtd);
83 
84  return part->master->_point(part->master, from + part->offset, len,
85  retlen, virt, phys);
86 }
87 
88 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
89 {
90  struct mtd_part *part = PART(mtd);
91 
92  return part->master->_unpoint(part->master, from + part->offset, len);
93 }
94 
95 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
96  unsigned long len,
97  unsigned long offset,
98  unsigned long flags)
99 {
100  struct mtd_part *part = PART(mtd);
101 
102  offset += part->offset;
103  return part->master->_get_unmapped_area(part->master, len, offset,
104  flags);
105 }
106 
107 static int part_read_oob(struct mtd_info *mtd, loff_t from,
108  struct mtd_oob_ops *ops)
109 {
110  struct mtd_part *part = PART(mtd);
111  int res;
112 
113  if (from >= mtd->size)
114  return -EINVAL;
115  if (ops->datbuf && from + ops->len > mtd->size)
116  return -EINVAL;
117 
118  /*
119  * If OOB is also requested, make sure that we do not read past the end
120  * of this partition.
121  */
122  if (ops->oobbuf) {
123  size_t len, pages;
124 
125  if (ops->mode == MTD_OPS_AUTO_OOB)
126  len = mtd->oobavail;
127  else
128  len = mtd->oobsize;
129  pages = mtd_div_by_ws(mtd->size, mtd);
130  pages -= mtd_div_by_ws(from, mtd);
131  if (ops->ooboffs + ops->ooblen > pages * len)
132  return -EINVAL;
133  }
134 
135  res = part->master->_read_oob(part->master, from + part->offset, ops);
136  if (unlikely(res)) {
137  if (mtd_is_bitflip(res))
138  mtd->ecc_stats.corrected++;
139  if (mtd_is_eccerr(res))
140  mtd->ecc_stats.failed++;
141  }
142  return res;
143 }
144 
145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146  size_t len, size_t *retlen, u_char *buf)
147 {
148  struct mtd_part *part = PART(mtd);
149  return part->master->_read_user_prot_reg(part->master, from, len,
150  retlen, buf);
151 }
152 
153 static int part_get_user_prot_info(struct mtd_info *mtd,
154  struct otp_info *buf, size_t len)
155 {
156  struct mtd_part *part = PART(mtd);
157  return part->master->_get_user_prot_info(part->master, buf, len);
158 }
159 
160 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
161  size_t len, size_t *retlen, u_char *buf)
162 {
163  struct mtd_part *part = PART(mtd);
164  return part->master->_read_fact_prot_reg(part->master, from, len,
165  retlen, buf);
166 }
167 
168 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
169  size_t len)
170 {
171  struct mtd_part *part = PART(mtd);
172  return part->master->_get_fact_prot_info(part->master, buf, len);
173 }
174 
175 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
176  size_t *retlen, const u_char *buf)
177 {
178  struct mtd_part *part = PART(mtd);
179  return part->master->_write(part->master, to + part->offset, len,
180  retlen, buf);
181 }
182 
183 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
184  size_t *retlen, const u_char *buf)
185 {
186  struct mtd_part *part = PART(mtd);
187  return part->master->_panic_write(part->master, to + part->offset, len,
188  retlen, buf);
189 }
190 
191 static int part_write_oob(struct mtd_info *mtd, loff_t to,
192  struct mtd_oob_ops *ops)
193 {
194  struct mtd_part *part = PART(mtd);
195 
196  if (to >= mtd->size)
197  return -EINVAL;
198  if (ops->datbuf && to + ops->len > mtd->size)
199  return -EINVAL;
200  return part->master->_write_oob(part->master, to + part->offset, ops);
201 }
202 
203 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
204  size_t len, size_t *retlen, u_char *buf)
205 {
206  struct mtd_part *part = PART(mtd);
207  return part->master->_write_user_prot_reg(part->master, from, len,
208  retlen, buf);
209 }
210 
211 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
212  size_t len)
213 {
214  struct mtd_part *part = PART(mtd);
215  return part->master->_lock_user_prot_reg(part->master, from, len);
216 }
217 
218 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
219  unsigned long count, loff_t to, size_t *retlen)
220 {
221  struct mtd_part *part = PART(mtd);
222  return part->master->_writev(part->master, vecs, count,
223  to + part->offset, retlen);
224 }
225 
226 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
227 {
228  struct mtd_part *part = PART(mtd);
229  int ret;
230 
231  instr->addr += part->offset;
232  ret = part->master->_erase(part->master, instr);
233  if (ret) {
234  if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
235  instr->fail_addr -= part->offset;
236  instr->addr -= part->offset;
237  }
238  return ret;
239 }
240 
241 void mtd_erase_callback(struct erase_info *instr)
242 {
243  if (instr->mtd->_erase == part_erase) {
244  struct mtd_part *part = PART(instr->mtd);
245 
246  if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
247  instr->fail_addr -= part->offset;
248  instr->addr -= part->offset;
249  }
250  if (instr->callback)
251  instr->callback(instr);
252 }
254 
255 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
256 {
257  struct mtd_part *part = PART(mtd);
258  return part->master->_lock(part->master, ofs + part->offset, len);
259 }
260 
261 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
262 {
263  struct mtd_part *part = PART(mtd);
264  return part->master->_unlock(part->master, ofs + part->offset, len);
265 }
266 
267 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
268 {
269  struct mtd_part *part = PART(mtd);
270  return part->master->_is_locked(part->master, ofs + part->offset, len);
271 }
272 
273 static void part_sync(struct mtd_info *mtd)
274 {
275  struct mtd_part *part = PART(mtd);
276  part->master->_sync(part->master);
277 }
278 
279 static int part_suspend(struct mtd_info *mtd)
280 {
281  struct mtd_part *part = PART(mtd);
282  return part->master->_suspend(part->master);
283 }
284 
285 static void part_resume(struct mtd_info *mtd)
286 {
287  struct mtd_part *part = PART(mtd);
288  part->master->_resume(part->master);
289 }
290 
291 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
292 {
293  struct mtd_part *part = PART(mtd);
294  ofs += part->offset;
295  return part->master->_block_isbad(part->master, ofs);
296 }
297 
298 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
299 {
300  struct mtd_part *part = PART(mtd);
301  int res;
302 
303  ofs += part->offset;
304  res = part->master->_block_markbad(part->master, ofs);
305  if (!res)
306  mtd->ecc_stats.badblocks++;
307  return res;
308 }
309 
310 static inline void free_partition(struct mtd_part *p)
311 {
312  kfree(p->mtd.name);
313  kfree(p);
314 }
315 
316 /*
317  * This function unregisters and destroy all slave MTD objects which are
318  * attached to the given master MTD object.
319  */
320 
322 {
323  struct mtd_part *slave, *next;
324  int ret, err = 0;
325 
326  mutex_lock(&mtd_partitions_mutex);
327  list_for_each_entry_safe(slave, next, &mtd_partitions, list)
328  if (slave->master == master) {
329  ret = del_mtd_device(&slave->mtd);
330  if (ret < 0) {
331  err = ret;
332  continue;
333  }
334  list_del(&slave->list);
335  free_partition(slave);
336  }
337  mutex_unlock(&mtd_partitions_mutex);
338 
339  return err;
340 }
341 
342 static struct mtd_part *allocate_partition(struct mtd_info *master,
343  const struct mtd_partition *part, int partno,
344  uint64_t cur_offset)
345 {
346  struct mtd_part *slave;
347  char *name;
348 
349  /* allocate the partition structure */
350  slave = kzalloc(sizeof(*slave), GFP_KERNEL);
351  name = kstrdup(part->name, GFP_KERNEL);
352  if (!name || !slave) {
353  printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
354  master->name);
355  kfree(name);
356  kfree(slave);
357  return ERR_PTR(-ENOMEM);
358  }
359 
360  /* set up the MTD object for this partition */
361  slave->mtd.type = master->type;
362  slave->mtd.flags = master->flags & ~part->mask_flags;
363  slave->mtd.size = part->size;
364  slave->mtd.writesize = master->writesize;
365  slave->mtd.writebufsize = master->writebufsize;
366  slave->mtd.oobsize = master->oobsize;
367  slave->mtd.oobavail = master->oobavail;
368  slave->mtd.subpage_sft = master->subpage_sft;
369 
370  slave->mtd.name = name;
371  slave->mtd.owner = master->owner;
372  slave->mtd.backing_dev_info = master->backing_dev_info;
373 
374  /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
375  * to have the same data be in two different partitions.
376  */
377  slave->mtd.dev.parent = master->dev.parent;
378 
379  slave->mtd._read = part_read;
380  slave->mtd._write = part_write;
381 
382  if (master->_panic_write)
383  slave->mtd._panic_write = part_panic_write;
384 
385  if (master->_point && master->_unpoint) {
386  slave->mtd._point = part_point;
387  slave->mtd._unpoint = part_unpoint;
388  }
389 
390  if (master->_get_unmapped_area)
391  slave->mtd._get_unmapped_area = part_get_unmapped_area;
392  if (master->_read_oob)
393  slave->mtd._read_oob = part_read_oob;
394  if (master->_write_oob)
395  slave->mtd._write_oob = part_write_oob;
396  if (master->_read_user_prot_reg)
397  slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
398  if (master->_read_fact_prot_reg)
399  slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
400  if (master->_write_user_prot_reg)
401  slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
402  if (master->_lock_user_prot_reg)
403  slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
404  if (master->_get_user_prot_info)
405  slave->mtd._get_user_prot_info = part_get_user_prot_info;
406  if (master->_get_fact_prot_info)
407  slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
408  if (master->_sync)
409  slave->mtd._sync = part_sync;
410  if (!partno && !master->dev.class && master->_suspend &&
411  master->_resume) {
412  slave->mtd._suspend = part_suspend;
413  slave->mtd._resume = part_resume;
414  }
415  if (master->_writev)
416  slave->mtd._writev = part_writev;
417  if (master->_lock)
418  slave->mtd._lock = part_lock;
419  if (master->_unlock)
420  slave->mtd._unlock = part_unlock;
421  if (master->_is_locked)
422  slave->mtd._is_locked = part_is_locked;
423  if (master->_block_isbad)
424  slave->mtd._block_isbad = part_block_isbad;
425  if (master->_block_markbad)
426  slave->mtd._block_markbad = part_block_markbad;
427  slave->mtd._erase = part_erase;
428  slave->master = master;
429  slave->offset = part->offset;
430 
431  if (slave->offset == MTDPART_OFS_APPEND)
432  slave->offset = cur_offset;
433  if (slave->offset == MTDPART_OFS_NXTBLK) {
434  slave->offset = cur_offset;
435  if (mtd_mod_by_eb(cur_offset, master) != 0) {
436  /* Round up to next erasesize */
437  slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
438  printk(KERN_NOTICE "Moving partition %d: "
439  "0x%012llx -> 0x%012llx\n", partno,
440  (unsigned long long)cur_offset, (unsigned long long)slave->offset);
441  }
442  }
443  if (slave->offset == MTDPART_OFS_RETAIN) {
444  slave->offset = cur_offset;
445  if (master->size - slave->offset >= slave->mtd.size) {
446  slave->mtd.size = master->size - slave->offset
447  - slave->mtd.size;
448  } else {
449  printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
450  part->name, master->size - slave->offset,
451  slave->mtd.size);
452  /* register to preserve ordering */
453  goto out_register;
454  }
455  }
456  if (slave->mtd.size == MTDPART_SIZ_FULL)
457  slave->mtd.size = master->size - slave->offset;
458 
459  printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
460  (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
461 
462  /* let's do some sanity checks */
463  if (slave->offset >= master->size) {
464  /* let's register it anyway to preserve ordering */
465  slave->offset = 0;
466  slave->mtd.size = 0;
467  printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
468  part->name);
469  goto out_register;
470  }
471  if (slave->offset + slave->mtd.size > master->size) {
472  slave->mtd.size = master->size - slave->offset;
473  printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
474  part->name, master->name, (unsigned long long)slave->mtd.size);
475  }
476  if (master->numeraseregions > 1) {
477  /* Deal with variable erase size stuff */
478  int i, max = master->numeraseregions;
479  u64 end = slave->offset + slave->mtd.size;
480  struct mtd_erase_region_info *regions = master->eraseregions;
481 
482  /* Find the first erase regions which is part of this
483  * partition. */
484  for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
485  ;
486  /* The loop searched for the region _behind_ the first one */
487  if (i > 0)
488  i--;
489 
490  /* Pick biggest erasesize */
491  for (; i < max && regions[i].offset < end; i++) {
492  if (slave->mtd.erasesize < regions[i].erasesize) {
493  slave->mtd.erasesize = regions[i].erasesize;
494  }
495  }
496  BUG_ON(slave->mtd.erasesize == 0);
497  } else {
498  /* Single erase size */
499  slave->mtd.erasesize = master->erasesize;
500  }
501 
502  if ((slave->mtd.flags & MTD_WRITEABLE) &&
503  mtd_mod_by_eb(slave->offset, &slave->mtd)) {
504  /* Doesn't start on a boundary of major erase size */
505  /* FIXME: Let it be writable if it is on a boundary of
506  * _minor_ erase size though */
507  slave->mtd.flags &= ~MTD_WRITEABLE;
508  printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
509  part->name);
510  }
511  if ((slave->mtd.flags & MTD_WRITEABLE) &&
512  mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
513  slave->mtd.flags &= ~MTD_WRITEABLE;
514  printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
515  part->name);
516  }
517 
518  slave->mtd.ecclayout = master->ecclayout;
519  slave->mtd.ecc_strength = master->ecc_strength;
520  slave->mtd.bitflip_threshold = master->bitflip_threshold;
521 
522  if (master->_block_isbad) {
523  uint64_t offs = 0;
524 
525  while (offs < slave->mtd.size) {
526  if (mtd_block_isbad(master, offs + slave->offset))
527  slave->mtd.ecc_stats.badblocks++;
528  offs += slave->mtd.erasesize;
529  }
530  }
531 
532 out_register:
533  return slave;
534 }
535 
536 int mtd_add_partition(struct mtd_info *master, char *name,
537  long long offset, long long length)
538 {
539  struct mtd_partition part;
540  struct mtd_part *p, *new;
541  uint64_t start, end;
542  int ret = 0;
543 
544  /* the direct offset is expected */
545  if (offset == MTDPART_OFS_APPEND ||
546  offset == MTDPART_OFS_NXTBLK)
547  return -EINVAL;
548 
549  if (length == MTDPART_SIZ_FULL)
550  length = master->size - offset;
551 
552  if (length <= 0)
553  return -EINVAL;
554 
555  part.name = name;
556  part.size = length;
557  part.offset = offset;
558  part.mask_flags = 0;
559  part.ecclayout = NULL;
560 
561  new = allocate_partition(master, &part, -1, offset);
562  if (IS_ERR(new))
563  return PTR_ERR(new);
564 
565  start = offset;
566  end = offset + length;
567 
568  mutex_lock(&mtd_partitions_mutex);
569  list_for_each_entry(p, &mtd_partitions, list)
570  if (p->master == master) {
571  if ((start >= p->offset) &&
572  (start < (p->offset + p->mtd.size)))
573  goto err_inv;
574 
575  if ((end >= p->offset) &&
576  (end < (p->offset + p->mtd.size)))
577  goto err_inv;
578  }
579 
580  list_add(&new->list, &mtd_partitions);
581  mutex_unlock(&mtd_partitions_mutex);
582 
583  add_mtd_device(&new->mtd);
584 
585  return ret;
586 err_inv:
587  mutex_unlock(&mtd_partitions_mutex);
588  free_partition(new);
589  return -EINVAL;
590 }
592 
593 int mtd_del_partition(struct mtd_info *master, int partno)
594 {
595  struct mtd_part *slave, *next;
596  int ret = -EINVAL;
597 
598  mutex_lock(&mtd_partitions_mutex);
599  list_for_each_entry_safe(slave, next, &mtd_partitions, list)
600  if ((slave->master == master) &&
601  (slave->mtd.index == partno)) {
602  ret = del_mtd_device(&slave->mtd);
603  if (ret < 0)
604  break;
605 
606  list_del(&slave->list);
607  free_partition(slave);
608  break;
609  }
610  mutex_unlock(&mtd_partitions_mutex);
611 
612  return ret;
613 }
615 
616 /*
617  * This function, given a master MTD object and a partition table, creates
618  * and registers slave MTD objects which are bound to the master according to
619  * the partition definitions.
620  *
621  * We don't register the master, or expect the caller to have done so,
622  * for reasons of data integrity.
623  */
624 
625 int add_mtd_partitions(struct mtd_info *master,
626  const struct mtd_partition *parts,
627  int nbparts)
628 {
629  struct mtd_part *slave;
630  uint64_t cur_offset = 0;
631  int i;
632 
633  printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
634 
635  for (i = 0; i < nbparts; i++) {
636  slave = allocate_partition(master, parts + i, i, cur_offset);
637  if (IS_ERR(slave))
638  return PTR_ERR(slave);
639 
640  mutex_lock(&mtd_partitions_mutex);
641  list_add(&slave->list, &mtd_partitions);
642  mutex_unlock(&mtd_partitions_mutex);
643 
644  add_mtd_device(&slave->mtd);
645 
646  cur_offset = slave->offset + slave->mtd.size;
647  }
648 
649  return 0;
650 }
651 
652 static DEFINE_SPINLOCK(part_parser_lock);
653 static LIST_HEAD(part_parsers);
654 
655 static struct mtd_part_parser *get_partition_parser(const char *name)
656 {
657  struct mtd_part_parser *p, *ret = NULL;
658 
659  spin_lock(&part_parser_lock);
660 
661  list_for_each_entry(p, &part_parsers, list)
662  if (!strcmp(p->name, name) && try_module_get(p->owner)) {
663  ret = p;
664  break;
665  }
666 
667  spin_unlock(&part_parser_lock);
668 
669  return ret;
670 }
671 
672 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
673 
675 {
676  spin_lock(&part_parser_lock);
677  list_add(&p->list, &part_parsers);
678  spin_unlock(&part_parser_lock);
679 
680  return 0;
681 }
683 
685 {
686  spin_lock(&part_parser_lock);
687  list_del(&p->list);
688  spin_unlock(&part_parser_lock);
689  return 0;
690 }
692 
693 /*
694  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
695  * are changing this array!
696  */
697 static const char *default_mtd_part_types[] = {
698  "cmdlinepart",
699  "ofpart",
700  NULL
701 };
702 
723 int parse_mtd_partitions(struct mtd_info *master, const char **types,
724  struct mtd_partition **pparts,
725  struct mtd_part_parser_data *data)
726 {
727  struct mtd_part_parser *parser;
728  int ret = 0;
729 
730  if (!types)
731  types = default_mtd_part_types;
732 
733  for ( ; ret <= 0 && *types; types++) {
734  parser = get_partition_parser(*types);
735  if (!parser && !request_module("%s", *types))
736  parser = get_partition_parser(*types);
737  if (!parser)
738  continue;
739  ret = (*parser->parse_fn)(master, pparts, data);
740  put_partition_parser(parser);
741  if (ret > 0) {
742  printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
743  ret, parser->name, master->name);
744  break;
745  }
746  }
747  return ret;
748 }
749 
750 int mtd_is_partition(const struct mtd_info *mtd)
751 {
752  struct mtd_part *part;
753  int ispart = 0;
754 
755  mutex_lock(&mtd_partitions_mutex);
756  list_for_each_entry(part, &mtd_partitions, list)
757  if (&part->mtd == mtd) {
758  ispart = 1;
759  break;
760  }
761  mutex_unlock(&mtd_partitions_mutex);
762 
763  return ispart;
764 }
766 
767 /* Returns the size of the entire flash chip */
769 {
770  if (!mtd_is_partition(mtd))
771  return mtd->size;
772 
773  return PART(mtd)->master->size;
774 }