Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mtdswap.c
Go to the documentation of this file.
1 /*
2  * Swap block device support for MTDs
3  * Turns an MTD device into a swap device with block wear leveling
4  *
5  * Copyright © 2007,2011 Nokia Corporation. All rights reserved.
6  *
7  * Authors: Jarkko Lavinen <[email protected]>
8  *
9  * Based on Richard Purdie's earlier implementation in 2007. Background
10  * support and lock-less operation written by Adrian Hunter.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * version 2 as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
24  * 02110-1301 USA
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/blktrans.h>
31 #include <linux/rbtree.h>
32 #include <linux/sched.h>
33 #include <linux/slab.h>
34 #include <linux/vmalloc.h>
35 #include <linux/genhd.h>
36 #include <linux/swap.h>
37 #include <linux/debugfs.h>
38 #include <linux/seq_file.h>
39 #include <linux/device.h>
40 #include <linux/math64.h>
41 
42 #define MTDSWAP_PREFIX "mtdswap"
43 
44 /*
45  * The number of free eraseblocks when GC should stop
46  */
47 #define CLEAN_BLOCK_THRESHOLD 20
48 
49 /*
50  * Number of free eraseblocks below which GC can also collect low frag
51  * blocks.
52  */
53 #define LOW_FRAG_GC_TRESHOLD 5
54 
55 /*
56  * Wear level cost amortization. We want to do wear leveling on the background
57  * without disturbing gc too much. This is made by defining max GC frequency.
58  * Frequency value 6 means 1/6 of the GC passes will pick an erase block based
59  * on the biggest wear difference rather than the biggest dirtiness.
60  *
61  * The lower freq2 should be chosen so that it makes sure the maximum erase
62  * difference will decrease even if a malicious application is deliberately
63  * trying to make erase differences large.
64  */
65 #define MAX_ERASE_DIFF 4000
66 #define COLLECT_NONDIRTY_BASE MAX_ERASE_DIFF
67 #define COLLECT_NONDIRTY_FREQ1 6
68 #define COLLECT_NONDIRTY_FREQ2 4
69 
70 #define PAGE_UNDEF UINT_MAX
71 #define BLOCK_UNDEF UINT_MAX
72 #define BLOCK_ERROR (UINT_MAX - 1)
73 #define BLOCK_MAX (UINT_MAX - 2)
74 
75 #define EBLOCK_BAD (1 << 0)
76 #define EBLOCK_NOMAGIC (1 << 1)
77 #define EBLOCK_BITFLIP (1 << 2)
78 #define EBLOCK_FAILED (1 << 3)
79 #define EBLOCK_READERR (1 << 4)
80 #define EBLOCK_IDX_SHIFT 5
81 
82 struct swap_eb {
83  struct rb_node rb;
84  struct rb_root *root;
85 
86  unsigned int flags;
87  unsigned int active_count;
88  unsigned int erase_count;
89  unsigned int pad; /* speeds up pointer decrement */
90 };
91 
92 #define MTDSWAP_ECNT_MIN(rbroot) (rb_entry(rb_first(rbroot), struct swap_eb, \
93  rb)->erase_count)
94 #define MTDSWAP_ECNT_MAX(rbroot) (rb_entry(rb_last(rbroot), struct swap_eb, \
95  rb)->erase_count)
96 
97 struct mtdswap_tree {
98  struct rb_root root;
99  unsigned int count;
100 };
101 
102 enum {
111 };
112 
113 struct mtdswap_dev {
115  struct mtd_info *mtd;
116  struct device *dev;
117 
118  unsigned int *page_data;
119  unsigned int *revmap;
120 
121  unsigned int eblks;
122  unsigned int spare_eblks;
123  unsigned int pages_per_eblk;
124  unsigned int max_erase_count;
125  struct swap_eb *eb_data;
126 
128 
129  unsigned long long sect_read_count;
130  unsigned long long sect_write_count;
131  unsigned long long mtd_write_count;
132  unsigned long long mtd_read_count;
133  unsigned long long discard_count;
134  unsigned long long discard_page_count;
135 
136  unsigned int curr_write_pos;
138 
139  char *page_buf;
140  char *oob_buf;
141 
143 };
144 
148 } __attribute__((packed));
150 #define MTDSWAP_MAGIC_CLEAN 0x2095
151 #define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1)
152 #define MTDSWAP_TYPE_CLEAN 0
153 #define MTDSWAP_TYPE_DIRTY 1
154 #define MTDSWAP_OOBSIZE sizeof(struct mtdswap_oobdata)
155 
156 #define MTDSWAP_ERASE_RETRIES 3 /* Before marking erase block bad */
157 #define MTDSWAP_IO_RETRIES 3
158 
159 enum {
164 };
165 
166 /*
167  * In the worst case mtdswap_writesect() has allocated the last clean
168  * page from the current block and is then pre-empted by the GC
169  * thread. The thread can consume a full erase block when moving a
170  * block.
171  */
172 #define MIN_SPARE_EBLOCKS 2
173 #define MIN_ERASE_BLOCKS (MIN_SPARE_EBLOCKS + 1)
174 
175 #define TREE_ROOT(d, name) (&d->trees[MTDSWAP_ ## name].root)
176 #define TREE_EMPTY(d, name) (TREE_ROOT(d, name)->rb_node == NULL)
177 #define TREE_NONEMPTY(d, name) (!TREE_EMPTY(d, name))
178 #define TREE_COUNT(d, name) (d->trees[MTDSWAP_ ## name].count)
179 
180 #define MTDSWAP_MBD_TO_MTDSWAP(dev) ((struct mtdswap_dev *)dev->priv)
181 
182 static char partitions[128] = "";
183 module_param_string(partitions, partitions, sizeof(partitions), 0444);
184 MODULE_PARM_DESC(partitions, "MTD partition numbers to use as swap "
185  "partitions=\"1,3,5\"");
186 
187 static unsigned int spare_eblocks = 10;
188 module_param(spare_eblocks, uint, 0444);
189 MODULE_PARM_DESC(spare_eblocks, "Percentage of spare erase blocks for "
190  "garbage collection (default 10%)");
191 
192 static bool header; /* false */
193 module_param(header, bool, 0444);
194 MODULE_PARM_DESC(header,
195  "Include builtin swap header (default 0, without header)");
196 
197 static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background);
198 
199 static loff_t mtdswap_eb_offset(struct mtdswap_dev *d, struct swap_eb *eb)
200 {
201  return (loff_t)(eb - d->eb_data) * d->mtd->erasesize;
202 }
203 
204 static void mtdswap_eb_detach(struct mtdswap_dev *d, struct swap_eb *eb)
205 {
206  unsigned int oldidx;
207  struct mtdswap_tree *tp;
208 
209  if (eb->root) {
210  tp = container_of(eb->root, struct mtdswap_tree, root);
211  oldidx = tp - &d->trees[0];
212 
213  d->trees[oldidx].count--;
214  rb_erase(&eb->rb, eb->root);
215  }
216 }
217 
218 static void __mtdswap_rb_add(struct rb_root *root, struct swap_eb *eb)
219 {
220  struct rb_node **p, *parent = NULL;
221  struct swap_eb *cur;
222 
223  p = &root->rb_node;
224  while (*p) {
225  parent = *p;
226  cur = rb_entry(parent, struct swap_eb, rb);
227  if (eb->erase_count > cur->erase_count)
228  p = &(*p)->rb_right;
229  else
230  p = &(*p)->rb_left;
231  }
232 
233  rb_link_node(&eb->rb, parent, p);
234  rb_insert_color(&eb->rb, root);
235 }
236 
237 static void mtdswap_rb_add(struct mtdswap_dev *d, struct swap_eb *eb, int idx)
238 {
239  struct rb_root *root;
240 
241  if (eb->root == &d->trees[idx].root)
242  return;
243 
244  mtdswap_eb_detach(d, eb);
245  root = &d->trees[idx].root;
246  __mtdswap_rb_add(root, eb);
247  eb->root = root;
248  d->trees[idx].count++;
249 }
250 
251 static struct rb_node *mtdswap_rb_index(struct rb_root *root, unsigned int idx)
252 {
253  struct rb_node *p;
254  unsigned int i;
255 
256  p = rb_first(root);
257  i = 0;
258  while (i < idx && p) {
259  p = rb_next(p);
260  i++;
261  }
262 
263  return p;
264 }
265 
266 static int mtdswap_handle_badblock(struct mtdswap_dev *d, struct swap_eb *eb)
267 {
268  int ret;
269  loff_t offset;
270 
271  d->spare_eblks--;
272  eb->flags |= EBLOCK_BAD;
273  mtdswap_eb_detach(d, eb);
274  eb->root = NULL;
275 
276  /* badblocks not supported */
277  if (!mtd_can_have_bb(d->mtd))
278  return 1;
279 
280  offset = mtdswap_eb_offset(d, eb);
281  dev_warn(d->dev, "Marking bad block at %08llx\n", offset);
282  ret = mtd_block_markbad(d->mtd, offset);
283 
284  if (ret) {
285  dev_warn(d->dev, "Mark block bad failed for block at %08llx "
286  "error %d\n", offset, ret);
287  return ret;
288  }
289 
290  return 1;
291 
292 }
293 
294 static int mtdswap_handle_write_error(struct mtdswap_dev *d, struct swap_eb *eb)
295 {
296  unsigned int marked = eb->flags & EBLOCK_FAILED;
297  struct swap_eb *curr_write = d->curr_write;
298 
299  eb->flags |= EBLOCK_FAILED;
300  if (curr_write == eb) {
301  d->curr_write = NULL;
302 
303  if (!marked && d->curr_write_pos != 0) {
304  mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
305  return 0;
306  }
307  }
308 
309  return mtdswap_handle_badblock(d, eb);
310 }
311 
312 static int mtdswap_read_oob(struct mtdswap_dev *d, loff_t from,
313  struct mtd_oob_ops *ops)
314 {
315  int ret = mtd_read_oob(d->mtd, from, ops);
316 
317  if (mtd_is_bitflip(ret))
318  return ret;
319 
320  if (ret) {
321  dev_warn(d->dev, "Read OOB failed %d for block at %08llx\n",
322  ret, from);
323  return ret;
324  }
325 
326  if (ops->oobretlen < ops->ooblen) {
327  dev_warn(d->dev, "Read OOB return short read (%zd bytes not "
328  "%zd) for block at %08llx\n",
329  ops->oobretlen, ops->ooblen, from);
330  return -EIO;
331  }
332 
333  return 0;
334 }
335 
336 static int mtdswap_read_markers(struct mtdswap_dev *d, struct swap_eb *eb)
337 {
338  struct mtdswap_oobdata *data, *data2;
339  int ret;
340  loff_t offset;
341  struct mtd_oob_ops ops;
342 
343  offset = mtdswap_eb_offset(d, eb);
344 
345  /* Check first if the block is bad. */
346  if (mtd_can_have_bb(d->mtd) && mtd_block_isbad(d->mtd, offset))
347  return MTDSWAP_SCANNED_BAD;
348 
349  ops.ooblen = 2 * d->mtd->ecclayout->oobavail;
350  ops.oobbuf = d->oob_buf;
351  ops.ooboffs = 0;
352  ops.datbuf = NULL;
353  ops.mode = MTD_OPS_AUTO_OOB;
354 
355  ret = mtdswap_read_oob(d, offset, &ops);
356 
357  if (ret && !mtd_is_bitflip(ret))
358  return ret;
359 
360  data = (struct mtdswap_oobdata *)d->oob_buf;
361  data2 = (struct mtdswap_oobdata *)
362  (d->oob_buf + d->mtd->ecclayout->oobavail);
363 
364  if (le16_to_cpu(data->magic) == MTDSWAP_MAGIC_CLEAN) {
365  eb->erase_count = le32_to_cpu(data->count);
366  if (mtd_is_bitflip(ret))
368  else {
369  if (le16_to_cpu(data2->magic) == MTDSWAP_MAGIC_DIRTY)
370  ret = MTDSWAP_SCANNED_DIRTY;
371  else
372  ret = MTDSWAP_SCANNED_CLEAN;
373  }
374  } else {
375  eb->flags |= EBLOCK_NOMAGIC;
376  ret = MTDSWAP_SCANNED_DIRTY;
377  }
378 
379  return ret;
380 }
381 
382 static int mtdswap_write_marker(struct mtdswap_dev *d, struct swap_eb *eb,
383  u16 marker)
384 {
385  struct mtdswap_oobdata n;
386  int ret;
387  loff_t offset;
388  struct mtd_oob_ops ops;
389 
390  ops.ooboffs = 0;
391  ops.oobbuf = (uint8_t *)&n;
392  ops.mode = MTD_OPS_AUTO_OOB;
393  ops.datbuf = NULL;
394 
395  if (marker == MTDSWAP_TYPE_CLEAN) {
397  n.count = cpu_to_le32(eb->erase_count);
398  ops.ooblen = MTDSWAP_OOBSIZE;
399  offset = mtdswap_eb_offset(d, eb);
400  } else {
402  ops.ooblen = sizeof(n.magic);
403  offset = mtdswap_eb_offset(d, eb) + d->mtd->writesize;
404  }
405 
406  ret = mtd_write_oob(d->mtd, offset, &ops);
407 
408  if (ret) {
409  dev_warn(d->dev, "Write OOB failed for block at %08llx "
410  "error %d\n", offset, ret);
411  if (ret == -EIO || mtd_is_eccerr(ret))
412  mtdswap_handle_write_error(d, eb);
413  return ret;
414  }
415 
416  if (ops.oobretlen != ops.ooblen) {
417  dev_warn(d->dev, "Short OOB write for block at %08llx: "
418  "%zd not %zd\n",
419  offset, ops.oobretlen, ops.ooblen);
420  return ret;
421  }
422 
423  return 0;
424 }
425 
426 /*
427  * Are there any erase blocks without MAGIC_CLEAN header, presumably
428  * because power was cut off after erase but before header write? We
429  * need to guestimate the erase count.
430  */
431 static void mtdswap_check_counts(struct mtdswap_dev *d)
432 {
433  struct rb_root hist_root = RB_ROOT;
434  struct rb_node *medrb;
435  struct swap_eb *eb;
436  unsigned int i, cnt, median;
437 
438  cnt = 0;
439  for (i = 0; i < d->eblks; i++) {
440  eb = d->eb_data + i;
441 
443  continue;
444 
445  __mtdswap_rb_add(&hist_root, eb);
446  cnt++;
447  }
448 
449  if (cnt == 0)
450  return;
451 
452  medrb = mtdswap_rb_index(&hist_root, cnt / 2);
453  median = rb_entry(medrb, struct swap_eb, rb)->erase_count;
454 
455  d->max_erase_count = MTDSWAP_ECNT_MAX(&hist_root);
456 
457  for (i = 0; i < d->eblks; i++) {
458  eb = d->eb_data + i;
459 
460  if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_READERR))
461  eb->erase_count = median;
462 
464  continue;
465 
466  rb_erase(&eb->rb, &hist_root);
467  }
468 }
469 
470 static void mtdswap_scan_eblks(struct mtdswap_dev *d)
471 {
472  int status;
473  unsigned int i, idx;
474  struct swap_eb *eb;
475 
476  for (i = 0; i < d->eblks; i++) {
477  eb = d->eb_data + i;
478 
479  status = mtdswap_read_markers(d, eb);
480  if (status < 0)
481  eb->flags |= EBLOCK_READERR;
482  else if (status == MTDSWAP_SCANNED_BAD) {
483  eb->flags |= EBLOCK_BAD;
484  continue;
485  }
486 
487  switch (status) {
489  idx = MTDSWAP_CLEAN;
490  break;
493  idx = MTDSWAP_DIRTY;
494  break;
495  default:
496  idx = MTDSWAP_FAILING;
497  }
498 
499  eb->flags |= (idx << EBLOCK_IDX_SHIFT);
500  }
501 
502  mtdswap_check_counts(d);
503 
504  for (i = 0; i < d->eblks; i++) {
505  eb = d->eb_data + i;
506 
507  if (eb->flags & EBLOCK_BAD)
508  continue;
509 
510  idx = eb->flags >> EBLOCK_IDX_SHIFT;
511  mtdswap_rb_add(d, eb, idx);
512  }
513 }
514 
515 /*
516  * Place eblk into a tree corresponding to its number of active blocks
517  * it contains.
518  */
519 static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb)
520 {
521  unsigned int weight = eb->active_count;
522  unsigned int maxweight = d->pages_per_eblk;
523 
524  if (eb == d->curr_write)
525  return;
526 
527  if (eb->flags & EBLOCK_BITFLIP)
528  mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
529  else if (eb->flags & (EBLOCK_READERR | EBLOCK_FAILED))
530  mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
531  if (weight == maxweight)
532  mtdswap_rb_add(d, eb, MTDSWAP_USED);
533  else if (weight == 0)
534  mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
535  else if (weight > (maxweight/2))
536  mtdswap_rb_add(d, eb, MTDSWAP_LOWFRAG);
537  else
538  mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG);
539 }
540 
541 
542 static void mtdswap_erase_callback(struct erase_info *done)
543 {
545  wake_up(wait_q);
546 }
547 
548 static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb)
549 {
550  struct mtd_info *mtd = d->mtd;
551  struct erase_info erase;
553  unsigned int retries = 0;
554  int ret;
555 
556  eb->erase_count++;
557  if (eb->erase_count > d->max_erase_count)
558  d->max_erase_count = eb->erase_count;
559 
560 retry:
561  init_waitqueue_head(&wq);
562  memset(&erase, 0, sizeof(struct erase_info));
563 
564  erase.mtd = mtd;
565  erase.callback = mtdswap_erase_callback;
566  erase.addr = mtdswap_eb_offset(d, eb);
567  erase.len = mtd->erasesize;
568  erase.priv = (u_long)&wq;
569 
570  ret = mtd_erase(mtd, &erase);
571  if (ret) {
572  if (retries++ < MTDSWAP_ERASE_RETRIES) {
573  dev_warn(d->dev,
574  "erase of erase block %#llx on %s failed",
575  erase.addr, mtd->name);
576  yield();
577  goto retry;
578  }
579 
580  dev_err(d->dev, "Cannot erase erase block %#llx on %s\n",
581  erase.addr, mtd->name);
582 
583  mtdswap_handle_badblock(d, eb);
584  return -EIO;
585  }
586 
587  ret = wait_event_interruptible(wq, erase.state == MTD_ERASE_DONE ||
588  erase.state == MTD_ERASE_FAILED);
589  if (ret) {
590  dev_err(d->dev, "Interrupted erase block %#llx erassure on %s",
591  erase.addr, mtd->name);
592  return -EINTR;
593  }
594 
595  if (erase.state == MTD_ERASE_FAILED) {
596  if (retries++ < MTDSWAP_ERASE_RETRIES) {
597  dev_warn(d->dev,
598  "erase of erase block %#llx on %s failed",
599  erase.addr, mtd->name);
600  yield();
601  goto retry;
602  }
603 
604  mtdswap_handle_badblock(d, eb);
605  return -EIO;
606  }
607 
608  return 0;
609 }
610 
611 static int mtdswap_map_free_block(struct mtdswap_dev *d, unsigned int page,
612  unsigned int *block)
613 {
614  int ret;
615  struct swap_eb *old_eb = d->curr_write;
616  struct rb_root *clean_root;
617  struct swap_eb *eb;
618 
619  if (old_eb == NULL || d->curr_write_pos >= d->pages_per_eblk) {
620  do {
621  if (TREE_EMPTY(d, CLEAN))
622  return -ENOSPC;
623 
624  clean_root = TREE_ROOT(d, CLEAN);
625  eb = rb_entry(rb_first(clean_root), struct swap_eb, rb);
626  rb_erase(&eb->rb, clean_root);
627  eb->root = NULL;
628  TREE_COUNT(d, CLEAN)--;
629 
630  ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_DIRTY);
631  } while (ret == -EIO || mtd_is_eccerr(ret));
632 
633  if (ret)
634  return ret;
635 
636  d->curr_write_pos = 0;
637  d->curr_write = eb;
638  if (old_eb)
639  mtdswap_store_eb(d, old_eb);
640  }
641 
642  *block = (d->curr_write - d->eb_data) * d->pages_per_eblk +
643  d->curr_write_pos;
644 
645  d->curr_write->active_count++;
646  d->revmap[*block] = page;
647  d->curr_write_pos++;
648 
649  return 0;
650 }
651 
652 static unsigned int mtdswap_free_page_cnt(struct mtdswap_dev *d)
653 {
654  return TREE_COUNT(d, CLEAN) * d->pages_per_eblk +
656 }
657 
658 static unsigned int mtdswap_enough_free_pages(struct mtdswap_dev *d)
659 {
660  return mtdswap_free_page_cnt(d) > d->pages_per_eblk;
661 }
662 
663 static int mtdswap_write_block(struct mtdswap_dev *d, char *buf,
664  unsigned int page, unsigned int *bp, int gc_context)
665 {
666  struct mtd_info *mtd = d->mtd;
667  struct swap_eb *eb;
668  size_t retlen;
669  loff_t writepos;
670  int ret;
671 
672 retry:
673  if (!gc_context)
674  while (!mtdswap_enough_free_pages(d))
675  if (mtdswap_gc(d, 0) > 0)
676  return -ENOSPC;
677 
678  ret = mtdswap_map_free_block(d, page, bp);
679  eb = d->eb_data + (*bp / d->pages_per_eblk);
680 
681  if (ret == -EIO || mtd_is_eccerr(ret)) {
682  d->curr_write = NULL;
683  eb->active_count--;
684  d->revmap[*bp] = PAGE_UNDEF;
685  goto retry;
686  }
687 
688  if (ret < 0)
689  return ret;
690 
691  writepos = (loff_t)*bp << PAGE_SHIFT;
692  ret = mtd_write(mtd, writepos, PAGE_SIZE, &retlen, buf);
693  if (ret == -EIO || mtd_is_eccerr(ret)) {
694  d->curr_write_pos--;
695  eb->active_count--;
696  d->revmap[*bp] = PAGE_UNDEF;
697  mtdswap_handle_write_error(d, eb);
698  goto retry;
699  }
700 
701  if (ret < 0) {
702  dev_err(d->dev, "Write to MTD device failed: %d (%zd written)",
703  ret, retlen);
704  goto err;
705  }
706 
707  if (retlen != PAGE_SIZE) {
708  dev_err(d->dev, "Short write to MTD device: %zd written",
709  retlen);
710  ret = -EIO;
711  goto err;
712  }
713 
714  return ret;
715 
716 err:
717  d->curr_write_pos--;
718  eb->active_count--;
719  d->revmap[*bp] = PAGE_UNDEF;
720 
721  return ret;
722 }
723 
724 static int mtdswap_move_block(struct mtdswap_dev *d, unsigned int oldblock,
725  unsigned int *newblock)
726 {
727  struct mtd_info *mtd = d->mtd;
728  struct swap_eb *eb, *oldeb;
729  int ret;
730  size_t retlen;
731  unsigned int page, retries;
732  loff_t readpos;
733 
734  page = d->revmap[oldblock];
735  readpos = (loff_t) oldblock << PAGE_SHIFT;
736  retries = 0;
737 
738 retry:
739  ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, d->page_buf);
740 
741  if (ret < 0 && !mtd_is_bitflip(ret)) {
742  oldeb = d->eb_data + oldblock / d->pages_per_eblk;
743  oldeb->flags |= EBLOCK_READERR;
744 
745  dev_err(d->dev, "Read Error: %d (block %u)\n", ret,
746  oldblock);
747  retries++;
748  if (retries < MTDSWAP_IO_RETRIES)
749  goto retry;
750 
751  goto read_error;
752  }
753 
754  if (retlen != PAGE_SIZE) {
755  dev_err(d->dev, "Short read: %zd (block %u)\n", retlen,
756  oldblock);
757  ret = -EIO;
758  goto read_error;
759  }
760 
761  ret = mtdswap_write_block(d, d->page_buf, page, newblock, 1);
762  if (ret < 0) {
763  d->page_data[page] = BLOCK_ERROR;
764  dev_err(d->dev, "Write error: %d\n", ret);
765  return ret;
766  }
767 
768  eb = d->eb_data + *newblock / d->pages_per_eblk;
769  d->page_data[page] = *newblock;
770  d->revmap[oldblock] = PAGE_UNDEF;
771  eb = d->eb_data + oldblock / d->pages_per_eblk;
772  eb->active_count--;
773 
774  return 0;
775 
776 read_error:
777  d->page_data[page] = BLOCK_ERROR;
778  d->revmap[oldblock] = PAGE_UNDEF;
779  return ret;
780 }
781 
782 static int mtdswap_gc_eblock(struct mtdswap_dev *d, struct swap_eb *eb)
783 {
784  unsigned int i, block, eblk_base, newblock;
785  int ret, errcode;
786 
787  errcode = 0;
788  eblk_base = (eb - d->eb_data) * d->pages_per_eblk;
789 
790  for (i = 0; i < d->pages_per_eblk; i++) {
792  return -ENOSPC;
793 
794  block = eblk_base + i;
795  if (d->revmap[block] == PAGE_UNDEF)
796  continue;
797 
798  ret = mtdswap_move_block(d, block, &newblock);
799  if (ret < 0 && !errcode)
800  errcode = ret;
801  }
802 
803  return errcode;
804 }
805 
806 static int __mtdswap_choose_gc_tree(struct mtdswap_dev *d)
807 {
808  int idx, stopat;
809 
810  if (TREE_COUNT(d, CLEAN) < LOW_FRAG_GC_TRESHOLD)
811  stopat = MTDSWAP_LOWFRAG;
812  else
813  stopat = MTDSWAP_HIFRAG;
814 
815  for (idx = MTDSWAP_BITFLIP; idx >= stopat; idx--)
816  if (d->trees[idx].root.rb_node != NULL)
817  return idx;
818 
819  return -1;
820 }
821 
822 static int mtdswap_wlfreq(unsigned int maxdiff)
823 {
824  unsigned int h, x, y, dist, base;
825 
826  /*
827  * Calculate linear ramp down from f1 to f2 when maxdiff goes from
828  * MAX_ERASE_DIFF to MAX_ERASE_DIFF + COLLECT_NONDIRTY_BASE. Similar
829  * to triangle with height f1 - f1 and width COLLECT_NONDIRTY_BASE.
830  */
831 
832  dist = maxdiff - MAX_ERASE_DIFF;
833  if (dist > COLLECT_NONDIRTY_BASE)
834  dist = COLLECT_NONDIRTY_BASE;
835 
836  /*
837  * Modelling the slop as right angular triangle with base
838  * COLLECT_NONDIRTY_BASE and height freq1 - freq2. The ratio y/x is
839  * equal to the ratio h/base.
840  */
842  base = COLLECT_NONDIRTY_BASE;
843 
844  x = dist - base;
845  y = (x * h + base / 2) / base;
846 
847  return COLLECT_NONDIRTY_FREQ2 + y;
848 }
849 
850 static int mtdswap_choose_wl_tree(struct mtdswap_dev *d)
851 {
852  static unsigned int pick_cnt;
853  unsigned int i, idx = -1, wear, max;
854  struct rb_root *root;
855 
856  max = 0;
857  for (i = 0; i <= MTDSWAP_DIRTY; i++) {
858  root = &d->trees[i].root;
859  if (root->rb_node == NULL)
860  continue;
861 
862  wear = d->max_erase_count - MTDSWAP_ECNT_MIN(root);
863  if (wear > max) {
864  max = wear;
865  idx = i;
866  }
867  }
868 
869  if (max > MAX_ERASE_DIFF && pick_cnt >= mtdswap_wlfreq(max) - 1) {
870  pick_cnt = 0;
871  return idx;
872  }
873 
874  pick_cnt++;
875  return -1;
876 }
877 
878 static int mtdswap_choose_gc_tree(struct mtdswap_dev *d,
879  unsigned int background)
880 {
881  int idx;
882 
883  if (TREE_NONEMPTY(d, FAILING) &&
884  (background || (TREE_EMPTY(d, CLEAN) && TREE_EMPTY(d, DIRTY))))
885  return MTDSWAP_FAILING;
886 
887  idx = mtdswap_choose_wl_tree(d);
888  if (idx >= MTDSWAP_CLEAN)
889  return idx;
890 
891  return __mtdswap_choose_gc_tree(d);
892 }
893 
894 static struct swap_eb *mtdswap_pick_gc_eblk(struct mtdswap_dev *d,
895  unsigned int background)
896 {
897  struct rb_root *rp = NULL;
898  struct swap_eb *eb = NULL;
899  int idx;
900 
901  if (background && TREE_COUNT(d, CLEAN) > CLEAN_BLOCK_THRESHOLD &&
902  TREE_EMPTY(d, DIRTY) && TREE_EMPTY(d, FAILING))
903  return NULL;
904 
905  idx = mtdswap_choose_gc_tree(d, background);
906  if (idx < 0)
907  return NULL;
908 
909  rp = &d->trees[idx].root;
910  eb = rb_entry(rb_first(rp), struct swap_eb, rb);
911 
912  rb_erase(&eb->rb, rp);
913  eb->root = NULL;
914  d->trees[idx].count--;
915  return eb;
916 }
917 
918 static unsigned int mtdswap_test_patt(unsigned int i)
919 {
920  return i % 2 ? 0x55555555 : 0xAAAAAAAA;
921 }
922 
923 static unsigned int mtdswap_eblk_passes(struct mtdswap_dev *d,
924  struct swap_eb *eb)
925 {
926  struct mtd_info *mtd = d->mtd;
927  unsigned int test, i, j, patt, mtd_pages;
928  loff_t base, pos;
929  unsigned int *p1 = (unsigned int *)d->page_buf;
930  unsigned char *p2 = (unsigned char *)d->oob_buf;
931  struct mtd_oob_ops ops;
932  int ret;
933 
934  ops.mode = MTD_OPS_AUTO_OOB;
935  ops.len = mtd->writesize;
936  ops.ooblen = mtd->ecclayout->oobavail;
937  ops.ooboffs = 0;
938  ops.datbuf = d->page_buf;
939  ops.oobbuf = d->oob_buf;
940  base = mtdswap_eb_offset(d, eb);
941  mtd_pages = d->pages_per_eblk * PAGE_SIZE / mtd->writesize;
942 
943  for (test = 0; test < 2; test++) {
944  pos = base;
945  for (i = 0; i < mtd_pages; i++) {
946  patt = mtdswap_test_patt(test + i);
947  memset(d->page_buf, patt, mtd->writesize);
948  memset(d->oob_buf, patt, mtd->ecclayout->oobavail);
949  ret = mtd_write_oob(mtd, pos, &ops);
950  if (ret)
951  goto error;
952 
953  pos += mtd->writesize;
954  }
955 
956  pos = base;
957  for (i = 0; i < mtd_pages; i++) {
958  ret = mtd_read_oob(mtd, pos, &ops);
959  if (ret)
960  goto error;
961 
962  patt = mtdswap_test_patt(test + i);
963  for (j = 0; j < mtd->writesize/sizeof(int); j++)
964  if (p1[j] != patt)
965  goto error;
966 
967  for (j = 0; j < mtd->ecclayout->oobavail; j++)
968  if (p2[j] != (unsigned char)patt)
969  goto error;
970 
971  pos += mtd->writesize;
972  }
973 
974  ret = mtdswap_erase_block(d, eb);
975  if (ret)
976  goto error;
977  }
978 
979  eb->flags &= ~EBLOCK_READERR;
980  return 1;
981 
982 error:
983  mtdswap_handle_badblock(d, eb);
984  return 0;
985 }
986 
987 static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background)
988 {
989  struct swap_eb *eb;
990  int ret;
991 
993  return 1;
994 
995  eb = mtdswap_pick_gc_eblk(d, background);
996  if (!eb)
997  return 1;
998 
999  ret = mtdswap_gc_eblock(d, eb);
1000  if (ret == -ENOSPC)
1001  return 1;
1002 
1003  if (eb->flags & EBLOCK_FAILED) {
1004  mtdswap_handle_badblock(d, eb);
1005  return 0;
1006  }
1007 
1008  eb->flags &= ~EBLOCK_BITFLIP;
1009  ret = mtdswap_erase_block(d, eb);
1010  if ((eb->flags & EBLOCK_READERR) &&
1011  (ret || !mtdswap_eblk_passes(d, eb)))
1012  return 0;
1013 
1014  if (ret == 0)
1015  ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_CLEAN);
1016 
1017  if (ret == 0)
1018  mtdswap_rb_add(d, eb, MTDSWAP_CLEAN);
1019  else if (ret != -EIO && !mtd_is_eccerr(ret))
1020  mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
1021 
1022  return 0;
1023 }
1024 
1025 static void mtdswap_background(struct mtd_blktrans_dev *dev)
1026 {
1027  struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1028  int ret;
1029 
1030  while (1) {
1031  ret = mtdswap_gc(d, 1);
1032  if (ret || mtd_blktrans_cease_background(dev))
1033  return;
1034  }
1035 }
1036 
1037 static void mtdswap_cleanup(struct mtdswap_dev *d)
1038 {
1039  vfree(d->eb_data);
1040  vfree(d->revmap);
1041  vfree(d->page_data);
1042  kfree(d->oob_buf);
1043  kfree(d->page_buf);
1044 }
1045 
1046 static int mtdswap_flush(struct mtd_blktrans_dev *dev)
1047 {
1048  struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1049 
1050  mtd_sync(d->mtd);
1051  return 0;
1052 }
1053 
1054 static unsigned int mtdswap_badblocks(struct mtd_info *mtd, uint64_t size)
1055 {
1056  loff_t offset;
1057  unsigned int badcnt;
1058 
1059  badcnt = 0;
1060 
1061  if (mtd_can_have_bb(mtd))
1062  for (offset = 0; offset < size; offset += mtd->erasesize)
1063  if (mtd_block_isbad(mtd, offset))
1064  badcnt++;
1065 
1066  return badcnt;
1067 }
1068 
1069 static int mtdswap_writesect(struct mtd_blktrans_dev *dev,
1070  unsigned long page, char *buf)
1071 {
1072  struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1073  unsigned int newblock, mapped;
1074  struct swap_eb *eb;
1075  int ret;
1076 
1077  d->sect_write_count++;
1078 
1079  if (d->spare_eblks < MIN_SPARE_EBLOCKS)
1080  return -ENOSPC;
1081 
1082  if (header) {
1083  /* Ignore writes to the header page */
1084  if (unlikely(page == 0))
1085  return 0;
1086 
1087  page--;
1088  }
1089 
1090  mapped = d->page_data[page];
1091  if (mapped <= BLOCK_MAX) {
1092  eb = d->eb_data + (mapped / d->pages_per_eblk);
1093  eb->active_count--;
1094  mtdswap_store_eb(d, eb);
1095  d->page_data[page] = BLOCK_UNDEF;
1096  d->revmap[mapped] = PAGE_UNDEF;
1097  }
1098 
1099  ret = mtdswap_write_block(d, buf, page, &newblock, 0);
1100  d->mtd_write_count++;
1101 
1102  if (ret < 0)
1103  return ret;
1104 
1105  eb = d->eb_data + (newblock / d->pages_per_eblk);
1106  d->page_data[page] = newblock;
1107 
1108  return 0;
1109 }
1110 
1111 /* Provide a dummy swap header for the kernel */
1112 static int mtdswap_auto_header(struct mtdswap_dev *d, char *buf)
1113 {
1114  union swap_header *hd = (union swap_header *)(buf);
1115 
1116  memset(buf, 0, PAGE_SIZE - 10);
1117 
1118  hd->info.version = 1;
1119  hd->info.last_page = d->mbd_dev->size - 1;
1120  hd->info.nr_badpages = 0;
1121 
1122  memcpy(buf + PAGE_SIZE - 10, "SWAPSPACE2", 10);
1123 
1124  return 0;
1125 }
1126 
1127 static int mtdswap_readsect(struct mtd_blktrans_dev *dev,
1128  unsigned long page, char *buf)
1129 {
1130  struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1131  struct mtd_info *mtd = d->mtd;
1132  unsigned int realblock, retries;
1133  loff_t readpos;
1134  struct swap_eb *eb;
1135  size_t retlen;
1136  int ret;
1137 
1138  d->sect_read_count++;
1139 
1140  if (header) {
1141  if (unlikely(page == 0))
1142  return mtdswap_auto_header(d, buf);
1143 
1144  page--;
1145  }
1146 
1147  realblock = d->page_data[page];
1148  if (realblock > BLOCK_MAX) {
1149  memset(buf, 0x0, PAGE_SIZE);
1150  if (realblock == BLOCK_UNDEF)
1151  return 0;
1152  else
1153  return -EIO;
1154  }
1155 
1156  eb = d->eb_data + (realblock / d->pages_per_eblk);
1157  BUG_ON(d->revmap[realblock] == PAGE_UNDEF);
1158 
1159  readpos = (loff_t)realblock << PAGE_SHIFT;
1160  retries = 0;
1161 
1162 retry:
1163  ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, buf);
1164 
1165  d->mtd_read_count++;
1166  if (mtd_is_bitflip(ret)) {
1167  eb->flags |= EBLOCK_BITFLIP;
1168  mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
1169  ret = 0;
1170  }
1171 
1172  if (ret < 0) {
1173  dev_err(d->dev, "Read error %d\n", ret);
1174  eb->flags |= EBLOCK_READERR;
1175  mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
1176  retries++;
1177  if (retries < MTDSWAP_IO_RETRIES)
1178  goto retry;
1179 
1180  return ret;
1181  }
1182 
1183  if (retlen != PAGE_SIZE) {
1184  dev_err(d->dev, "Short read %zd\n", retlen);
1185  return -EIO;
1186  }
1187 
1188  return 0;
1189 }
1190 
1191 static int mtdswap_discard(struct mtd_blktrans_dev *dev, unsigned long first,
1192  unsigned nr_pages)
1193 {
1194  struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1195  unsigned long page;
1196  struct swap_eb *eb;
1197  unsigned int mapped;
1198 
1199  d->discard_count++;
1200 
1201  for (page = first; page < first + nr_pages; page++) {
1202  mapped = d->page_data[page];
1203  if (mapped <= BLOCK_MAX) {
1204  eb = d->eb_data + (mapped / d->pages_per_eblk);
1205  eb->active_count--;
1206  mtdswap_store_eb(d, eb);
1207  d->page_data[page] = BLOCK_UNDEF;
1208  d->revmap[mapped] = PAGE_UNDEF;
1209  d->discard_page_count++;
1210  } else if (mapped == BLOCK_ERROR) {
1211  d->page_data[page] = BLOCK_UNDEF;
1212  d->discard_page_count++;
1213  }
1214  }
1215 
1216  return 0;
1217 }
1218 
1219 static int mtdswap_show(struct seq_file *s, void *data)
1220 {
1221  struct mtdswap_dev *d = (struct mtdswap_dev *) s->private;
1222  unsigned long sum;
1223  unsigned int count[MTDSWAP_TREE_CNT];
1224  unsigned int min[MTDSWAP_TREE_CNT];
1225  unsigned int max[MTDSWAP_TREE_CNT];
1226  unsigned int i, cw = 0, cwp = 0, cwecount = 0, bb_cnt, mapped, pages;
1227  uint64_t use_size;
1228  char *name[] = {"clean", "used", "low", "high", "dirty", "bitflip",
1229  "failing"};
1230 
1231  mutex_lock(&d->mbd_dev->lock);
1232 
1233  for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
1234  struct rb_root *root = &d->trees[i].root;
1235 
1236  if (root->rb_node) {
1237  count[i] = d->trees[i].count;
1238  min[i] = rb_entry(rb_first(root), struct swap_eb,
1239  rb)->erase_count;
1240  max[i] = rb_entry(rb_last(root), struct swap_eb,
1241  rb)->erase_count;
1242  } else
1243  count[i] = 0;
1244  }
1245 
1246  if (d->curr_write) {
1247  cw = 1;
1248  cwp = d->curr_write_pos;
1249  cwecount = d->curr_write->erase_count;
1250  }
1251 
1252  sum = 0;
1253  for (i = 0; i < d->eblks; i++)
1254  sum += d->eb_data[i].erase_count;
1255 
1256  use_size = (uint64_t)d->eblks * d->mtd->erasesize;
1257  bb_cnt = mtdswap_badblocks(d->mtd, use_size);
1258 
1259  mapped = 0;
1260  pages = d->mbd_dev->size;
1261  for (i = 0; i < pages; i++)
1262  if (d->page_data[i] != BLOCK_UNDEF)
1263  mapped++;
1264 
1265  mutex_unlock(&d->mbd_dev->lock);
1266 
1267  for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
1268  if (!count[i])
1269  continue;
1270 
1271  if (min[i] != max[i])
1272  seq_printf(s, "%s:\t%5d erase blocks, erased min %d, "
1273  "max %d times\n",
1274  name[i], count[i], min[i], max[i]);
1275  else
1276  seq_printf(s, "%s:\t%5d erase blocks, all erased %d "
1277  "times\n", name[i], count[i], min[i]);
1278  }
1279 
1280  if (bb_cnt)
1281  seq_printf(s, "bad:\t%5u erase blocks\n", bb_cnt);
1282 
1283  if (cw)
1284  seq_printf(s, "current erase block: %u pages used, %u free, "
1285  "erased %u times\n",
1286  cwp, d->pages_per_eblk - cwp, cwecount);
1287 
1288  seq_printf(s, "total erasures: %lu\n", sum);
1289 
1290  seq_printf(s, "\n");
1291 
1292  seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count);
1293  seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count);
1294  seq_printf(s, "mtdswap_discard count: %llu\n", d->discard_count);
1295  seq_printf(s, "mtd read count: %llu\n", d->mtd_read_count);
1296  seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count);
1297  seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count);
1298 
1299  seq_printf(s, "\n");
1300  seq_printf(s, "total pages: %u\n", pages);
1301  seq_printf(s, "pages mapped: %u\n", mapped);
1302 
1303  return 0;
1304 }
1305 
1306 static int mtdswap_open(struct inode *inode, struct file *file)
1307 {
1308  return single_open(file, mtdswap_show, inode->i_private);
1309 }
1310 
1311 static const struct file_operations mtdswap_fops = {
1312  .open = mtdswap_open,
1313  .read = seq_read,
1314  .llseek = seq_lseek,
1315  .release = single_release,
1316 };
1317 
1318 static int mtdswap_add_debugfs(struct mtdswap_dev *d)
1319 {
1320  struct gendisk *gd = d->mbd_dev->disk;
1321  struct device *dev = disk_to_dev(gd);
1322 
1323  struct dentry *root;
1324  struct dentry *dent;
1325 
1326  root = debugfs_create_dir(gd->disk_name, NULL);
1327  if (IS_ERR(root))
1328  return 0;
1329 
1330  if (!root) {
1331  dev_err(dev, "failed to initialize debugfs\n");
1332  return -1;
1333  }
1334 
1335  d->debugfs_root = root;
1336 
1337  dent = debugfs_create_file("stats", S_IRUSR, root, d,
1338  &mtdswap_fops);
1339  if (!dent) {
1340  dev_err(d->dev, "debugfs_create_file failed\n");
1342  d->debugfs_root = NULL;
1343  return -1;
1344  }
1345 
1346  return 0;
1347 }
1348 
1349 static int mtdswap_init(struct mtdswap_dev *d, unsigned int eblocks,
1350  unsigned int spare_cnt)
1351 {
1352  struct mtd_info *mtd = d->mbd_dev->mtd;
1353  unsigned int i, eblk_bytes, pages, blocks;
1354  int ret = -ENOMEM;
1355 
1356  d->mtd = mtd;
1357  d->eblks = eblocks;
1358  d->spare_eblks = spare_cnt;
1359  d->pages_per_eblk = mtd->erasesize >> PAGE_SHIFT;
1360 
1361  pages = d->mbd_dev->size;
1362  blocks = eblocks * d->pages_per_eblk;
1363 
1364  for (i = 0; i < MTDSWAP_TREE_CNT; i++)
1365  d->trees[i].root = RB_ROOT;
1366 
1367  d->page_data = vmalloc(sizeof(int)*pages);
1368  if (!d->page_data)
1369  goto page_data_fail;
1370 
1371  d->revmap = vmalloc(sizeof(int)*blocks);
1372  if (!d->revmap)
1373  goto revmap_fail;
1374 
1375  eblk_bytes = sizeof(struct swap_eb)*d->eblks;
1376  d->eb_data = vzalloc(eblk_bytes);
1377  if (!d->eb_data)
1378  goto eb_data_fail;
1379 
1380  for (i = 0; i < pages; i++)
1381  d->page_data[i] = BLOCK_UNDEF;
1382 
1383  for (i = 0; i < blocks; i++)
1384  d->revmap[i] = PAGE_UNDEF;
1385 
1387  if (!d->page_buf)
1388  goto page_buf_fail;
1389 
1390  d->oob_buf = kmalloc(2 * mtd->ecclayout->oobavail, GFP_KERNEL);
1391  if (!d->oob_buf)
1392  goto oob_buf_fail;
1393 
1394  mtdswap_scan_eblks(d);
1395 
1396  return 0;
1397 
1398 oob_buf_fail:
1399  kfree(d->page_buf);
1400 page_buf_fail:
1401  vfree(d->eb_data);
1402 eb_data_fail:
1403  vfree(d->revmap);
1404 revmap_fail:
1405  vfree(d->page_data);
1406 page_data_fail:
1407  printk(KERN_ERR "%s: init failed (%d)\n", MTDSWAP_PREFIX, ret);
1408  return ret;
1409 }
1410 
1411 static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
1412 {
1413  struct mtdswap_dev *d;
1414  struct mtd_blktrans_dev *mbd_dev;
1415  char *parts;
1416  char *this_opt;
1417  unsigned long part;
1418  unsigned int eblocks, eavailable, bad_blocks, spare_cnt;
1419  uint64_t swap_size, use_size, size_limit;
1420  struct nand_ecclayout *oinfo;
1421  int ret;
1422 
1423  parts = &partitions[0];
1424  if (!*parts)
1425  return;
1426 
1427  while ((this_opt = strsep(&parts, ",")) != NULL) {
1428  if (strict_strtoul(this_opt, 0, &part) < 0)
1429  return;
1430 
1431  if (mtd->index == part)
1432  break;
1433  }
1434 
1435  if (mtd->index != part)
1436  return;
1437 
1438  if (mtd->erasesize < PAGE_SIZE || mtd->erasesize % PAGE_SIZE) {
1439  printk(KERN_ERR "%s: Erase size %u not multiple of PAGE_SIZE "
1440  "%lu\n", MTDSWAP_PREFIX, mtd->erasesize, PAGE_SIZE);
1441  return;
1442  }
1443 
1444  if (PAGE_SIZE % mtd->writesize || mtd->writesize > PAGE_SIZE) {
1445  printk(KERN_ERR "%s: PAGE_SIZE %lu not multiple of write size"
1446  " %u\n", MTDSWAP_PREFIX, PAGE_SIZE, mtd->writesize);
1447  return;
1448  }
1449 
1450  oinfo = mtd->ecclayout;
1451  if (!oinfo) {
1452  printk(KERN_ERR "%s: mtd%d does not have OOB\n",
1453  MTDSWAP_PREFIX, mtd->index);
1454  return;
1455  }
1456 
1457  if (!mtd->oobsize || oinfo->oobavail < MTDSWAP_OOBSIZE) {
1458  printk(KERN_ERR "%s: Not enough free bytes in OOB, "
1459  "%d available, %zu needed.\n",
1461  return;
1462  }
1463 
1464  if (spare_eblocks > 100)
1465  spare_eblocks = 100;
1466 
1467  use_size = mtd->size;
1468  size_limit = (uint64_t) BLOCK_MAX * PAGE_SIZE;
1469 
1470  if (mtd->size > size_limit) {
1471  printk(KERN_WARNING "%s: Device too large. Limiting size to "
1472  "%llu bytes\n", MTDSWAP_PREFIX, size_limit);
1473  use_size = size_limit;
1474  }
1475 
1476  eblocks = mtd_div_by_eb(use_size, mtd);
1477  use_size = eblocks * mtd->erasesize;
1478  bad_blocks = mtdswap_badblocks(mtd, use_size);
1479  eavailable = eblocks - bad_blocks;
1480 
1481  if (eavailable < MIN_ERASE_BLOCKS) {
1482  printk(KERN_ERR "%s: Not enough erase blocks. %u available, "
1483  "%d needed\n", MTDSWAP_PREFIX, eavailable,
1485  return;
1486  }
1487 
1488  spare_cnt = div_u64((uint64_t)eavailable * spare_eblocks, 100);
1489 
1490  if (spare_cnt < MIN_SPARE_EBLOCKS)
1491  spare_cnt = MIN_SPARE_EBLOCKS;
1492 
1493  if (spare_cnt > eavailable - 1)
1494  spare_cnt = eavailable - 1;
1495 
1496  swap_size = (uint64_t)(eavailable - spare_cnt) * mtd->erasesize +
1497  (header ? PAGE_SIZE : 0);
1498 
1499  printk(KERN_INFO "%s: Enabling MTD swap on device %lu, size %llu KB, "
1500  "%u spare, %u bad blocks\n",
1501  MTDSWAP_PREFIX, part, swap_size / 1024, spare_cnt, bad_blocks);
1502 
1503  d = kzalloc(sizeof(struct mtdswap_dev), GFP_KERNEL);
1504  if (!d)
1505  return;
1506 
1507  mbd_dev = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL);
1508  if (!mbd_dev) {
1509  kfree(d);
1510  return;
1511  }
1512 
1513  d->mbd_dev = mbd_dev;
1514  mbd_dev->priv = d;
1515 
1516  mbd_dev->mtd = mtd;
1517  mbd_dev->devnum = mtd->index;
1518  mbd_dev->size = swap_size >> PAGE_SHIFT;
1519  mbd_dev->tr = tr;
1520 
1521  if (!(mtd->flags & MTD_WRITEABLE))
1522  mbd_dev->readonly = 1;
1523 
1524  if (mtdswap_init(d, eblocks, spare_cnt) < 0)
1525  goto init_failed;
1526 
1527  if (add_mtd_blktrans_dev(mbd_dev) < 0)
1528  goto cleanup;
1529 
1530  d->dev = disk_to_dev(mbd_dev->disk);
1531 
1532  ret = mtdswap_add_debugfs(d);
1533  if (ret < 0)
1534  goto debugfs_failed;
1535 
1536  return;
1537 
1538 debugfs_failed:
1539  del_mtd_blktrans_dev(mbd_dev);
1540 
1541 cleanup:
1542  mtdswap_cleanup(d);
1543 
1544 init_failed:
1545  kfree(mbd_dev);
1546  kfree(d);
1547 }
1548 
1549 static void mtdswap_remove_dev(struct mtd_blktrans_dev *dev)
1550 {
1551  struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
1552 
1554  del_mtd_blktrans_dev(dev);
1555  mtdswap_cleanup(d);
1556  kfree(d);
1557 }
1558 
1559 static struct mtd_blktrans_ops mtdswap_ops = {
1560  .name = "mtdswap",
1561  .major = 0,
1562  .part_bits = 0,
1563  .blksize = PAGE_SIZE,
1564  .flush = mtdswap_flush,
1565  .readsect = mtdswap_readsect,
1566  .writesect = mtdswap_writesect,
1567  .discard = mtdswap_discard,
1568  .background = mtdswap_background,
1569  .add_mtd = mtdswap_add_mtd,
1570  .remove_dev = mtdswap_remove_dev,
1571  .owner = THIS_MODULE,
1572 };
1573 
1574 static int __init mtdswap_modinit(void)
1575 {
1576  return register_mtd_blktrans(&mtdswap_ops);
1577 }
1578 
1579 static void __exit mtdswap_modexit(void)
1580 {
1581  deregister_mtd_blktrans(&mtdswap_ops);
1582 }
1583 
1584 module_init(mtdswap_modinit);
1585 module_exit(mtdswap_modexit);
1586 
1587 
1588 MODULE_LICENSE("GPL");
1589 MODULE_AUTHOR("Jarkko Lavinen <[email protected]>");
1590 MODULE_DESCRIPTION("Block device access to an MTD suitable for using as "
1591  "swap space");