Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
numa_32.c
Go to the documentation of this file.
1 /*
2  * Written by: Patricia Gaughen <[email protected]>, IBM Corporation
3  * August 2002: added remote node KVA remap - Martin J. Bligh
4  *
5  * Copyright (C) 2002, IBM Corp.
6  *
7  * All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17  * NON INFRINGEMENT. See the GNU General Public License for more
18  * details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bootmem.h>
26 #include <linux/memblock.h>
27 #include <linux/module.h>
28 
29 #include "numa_internal.h"
30 
31 #ifdef CONFIG_DISCONTIGMEM
32 /*
33  * 4) physnode_map - the mapping between a pfn and owning node
34  * physnode_map keeps track of the physical memory layout of a generic
35  * numa node on a 64Mb break (each element of the array will
36  * represent 64Mb of memory and will be marked by the node id. so,
37  * if the first gig is on node 0, and the second gig is on node 1
38  * physnode_map will contain:
39  *
40  * physnode_map[0-15] = 0;
41  * physnode_map[16-31] = 1;
42  * physnode_map[32- ] = -1;
43  */
44 s8 physnode_map[MAX_SECTIONS] __read_mostly = { [0 ... (MAX_SECTIONS - 1)] = -1};
45 EXPORT_SYMBOL(physnode_map);
46 
47 void memory_present(int nid, unsigned long start, unsigned long end)
48 {
49  unsigned long pfn;
50 
51  printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n",
52  nid, start, end);
53  printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
54  printk(KERN_DEBUG " ");
55  for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
56  physnode_map[pfn / PAGES_PER_SECTION] = nid;
57  printk(KERN_CONT "%lx ", pfn);
58  }
59  printk(KERN_CONT "\n");
60 }
61 
62 unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
63  unsigned long end_pfn)
64 {
65  unsigned long nr_pages = end_pfn - start_pfn;
66 
67  if (!nr_pages)
68  return 0;
69 
70  return (nr_pages + 1) * sizeof(struct page);
71 }
72 #endif
73 
74 extern unsigned long highend_pfn, highstart_pfn;
75 
76 #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
77 
78 static void *node_remap_start_vaddr[MAX_NUMNODES];
79 void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
80 
81 /*
82  * Remap memory allocator
83  */
84 static unsigned long node_remap_start_pfn[MAX_NUMNODES];
85 static void *node_remap_end_vaddr[MAX_NUMNODES];
86 static void *node_remap_alloc_vaddr[MAX_NUMNODES];
87 
107 void *alloc_remap(int nid, unsigned long size)
108 {
109  void *allocation = node_remap_alloc_vaddr[nid];
110 
111  size = ALIGN(size, L1_CACHE_BYTES);
112 
113  if (!allocation || (allocation + size) > node_remap_end_vaddr[nid])
114  return NULL;
115 
116  node_remap_alloc_vaddr[nid] += size;
117  memset(allocation, 0, size);
118 
119  return allocation;
120 }
121 
122 #ifdef CONFIG_HIBERNATION
123 
128 void resume_map_numa_kva(pgd_t *pgd_base)
129 {
130  int node;
131 
132  for_each_online_node(node) {
133  unsigned long start_va, start_pfn, nr_pages, pfn;
134 
135  start_va = (unsigned long)node_remap_start_vaddr[node];
136  start_pfn = node_remap_start_pfn[node];
137  nr_pages = (node_remap_end_vaddr[node] -
138  node_remap_start_vaddr[node]) >> PAGE_SHIFT;
139 
140  printk(KERN_DEBUG "%s: node %d\n", __func__, node);
141 
142  for (pfn = 0; pfn < nr_pages; pfn += PTRS_PER_PTE) {
143  unsigned long vaddr = start_va + (pfn << PAGE_SHIFT);
144  pgd_t *pgd = pgd_base + pgd_index(vaddr);
145  pud_t *pud = pud_offset(pgd, vaddr);
146  pmd_t *pmd = pmd_offset(pud, vaddr);
147 
148  set_pmd(pmd, pfn_pmd(start_pfn + pfn,
150 
151  printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n",
152  __func__, vaddr, start_pfn + pfn);
153  }
154  }
155 }
156 #endif
157 
180 void __init init_alloc_remap(int nid, u64 start, u64 end)
181 {
182  unsigned long start_pfn = start >> PAGE_SHIFT;
183  unsigned long end_pfn = end >> PAGE_SHIFT;
184  unsigned long size, pfn;
185  u64 node_pa, remap_pa;
186  void *remap_va;
187 
188  /*
189  * The acpi/srat node info can show hot-add memroy zones where
190  * memory could be added but not currently present.
191  */
192  printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n",
193  nid, start_pfn, end_pfn);
194 
195  /* calculate the necessary space aligned to large page size */
196  size = node_memmap_size_bytes(nid, start_pfn, end_pfn);
197  size += ALIGN(sizeof(pg_data_t), PAGE_SIZE);
198  size = ALIGN(size, LARGE_PAGE_BYTES);
199 
200  /* allocate node memory and the lowmem remap area */
201  node_pa = memblock_find_in_range(start, end, size, LARGE_PAGE_BYTES);
202  if (!node_pa) {
203  pr_warning("remap_alloc: failed to allocate %lu bytes for node %d\n",
204  size, nid);
205  return;
206  }
207  memblock_reserve(node_pa, size);
208 
209  remap_pa = memblock_find_in_range(min_low_pfn << PAGE_SHIFT,
210  max_low_pfn << PAGE_SHIFT,
211  size, LARGE_PAGE_BYTES);
212  if (!remap_pa) {
213  pr_warning("remap_alloc: failed to allocate %lu bytes remap area for node %d\n",
214  size, nid);
215  memblock_free(node_pa, size);
216  return;
217  }
218  memblock_reserve(remap_pa, size);
219  remap_va = phys_to_virt(remap_pa);
220 
221  /* perform actual remap */
222  for (pfn = 0; pfn < size >> PAGE_SHIFT; pfn += PTRS_PER_PTE)
223  set_pmd_pfn((unsigned long)remap_va + (pfn << PAGE_SHIFT),
224  (node_pa >> PAGE_SHIFT) + pfn,
226 
227  /* initialize remap allocator parameters */
228  node_remap_start_pfn[nid] = node_pa >> PAGE_SHIFT;
229  node_remap_start_vaddr[nid] = remap_va;
230  node_remap_end_vaddr[nid] = remap_va + size;
231  node_remap_alloc_vaddr[nid] = remap_va;
232 
233  printk(KERN_DEBUG "remap_alloc: node %d [%08llx-%08llx) -> [%p-%p)\n",
234  nid, node_pa, node_pa + size, remap_va, remap_va + size);
235 }
236 
238 {
239  x86_numa_init();
240 
241 #ifdef CONFIG_HIGHMEM
242  highstart_pfn = highend_pfn = max_pfn;
243  if (max_pfn > max_low_pfn)
244  highstart_pfn = max_low_pfn;
245  printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
246  pages_to_mb(highend_pfn - highstart_pfn));
248  high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
249 #else
251  high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
252 #endif
253  printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
255  printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
256  max_low_pfn, highstart_pfn);
257 
258  printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
260 
261  printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
262  (ulong) pfn_to_kaddr(highstart_pfn));
263 
265 }