Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
oid_mgt.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003,2004 Aurelien Alleaume <[email protected]>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 
22 #include "prismcompat.h"
23 #include "islpci_dev.h"
24 #include "islpci_mgt.h"
25 #include "isl_oid.h"
26 #include "oid_mgt.h"
27 #include "isl_ioctl.h"
28 
29 /* to convert between channel and freq */
30 static const int frequency_list_bg[] = { 2412, 2417, 2422, 2427, 2432,
31  2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484
32 };
33 
34 int
36 {
37  int c = 0;
38 
39  if ((f >= 2412) && (f <= 2484)) {
40  while ((c < 14) && (f != frequency_list_bg[c]))
41  c++;
42  return (c >= 14) ? 0 : ++c;
43  } else if ((f >= (int) 5000) && (f <= (int) 6000)) {
44  return ( (f - 5000) / 5 );
45  } else
46  return 0;
47 }
48 
49 #define OID_STRUCT(name,oid,s,t) [name] = {oid, 0, sizeof(s), t}
50 #define OID_STRUCT_C(name,oid,s,t) OID_STRUCT(name,oid,s,t | OID_FLAG_CACHED)
51 #define OID_U32(name,oid) OID_STRUCT(name,oid,u32,OID_TYPE_U32)
52 #define OID_U32_C(name,oid) OID_STRUCT_C(name,oid,u32,OID_TYPE_U32)
53 #define OID_STRUCT_MLME(name,oid) OID_STRUCT(name,oid,struct obj_mlme,OID_TYPE_MLME)
54 #define OID_STRUCT_MLMEEX(name,oid) OID_STRUCT(name,oid,struct obj_mlmeex,OID_TYPE_MLMEEX)
55 
56 #define OID_UNKNOWN(name,oid) OID_STRUCT(name,oid,0,0)
57 
58 struct oid_t isl_oid[] = {
60  OID_U32(GEN_OID_LINKSTATE, 0x00000001),
61  OID_UNKNOWN(GEN_OID_WATCHDOG, 0x00000002),
62  OID_UNKNOWN(GEN_OID_MIBOP, 0x00000003),
63  OID_UNKNOWN(GEN_OID_OPTIONS, 0x00000004),
64  OID_UNKNOWN(GEN_OID_LEDCONFIG, 0x00000005),
65 
66  /* 802.11 */
67  OID_U32_C(DOT11_OID_BSSTYPE, 0x10000000),
68  OID_STRUCT_C(DOT11_OID_BSSID, 0x10000001, u8[6], OID_TYPE_RAW),
69  OID_STRUCT_C(DOT11_OID_SSID, 0x10000002, struct obj_ssid,
71  OID_U32(DOT11_OID_STATE, 0x10000003),
72  OID_U32(DOT11_OID_AID, 0x10000004),
74  OID_STRUCT_C(DOT11_OID_SSIDOVERRIDE, 0x10000006, struct obj_ssid,
76 
77  OID_U32(DOT11_OID_MEDIUMLIMIT, 0x11000000),
78  OID_U32_C(DOT11_OID_BEACONPERIOD, 0x11000001),
79  OID_U32(DOT11_OID_DTIMPERIOD, 0x11000002),
80  OID_U32(DOT11_OID_ATIMWINDOW, 0x11000003),
81  OID_U32(DOT11_OID_LISTENINTERVAL, 0x11000004),
82  OID_U32(DOT11_OID_CFPPERIOD, 0x11000005),
83  OID_U32(DOT11_OID_CFPDURATION, 0x11000006),
84 
85  OID_U32_C(DOT11_OID_AUTHENABLE, 0x12000000),
88  OID_U32_C(DOT11_OID_DEFKEYID, 0x12000003),
89  [DOT11_OID_DEFKEYX] = {0x12000004, 3, sizeof (struct obj_key),
90  OID_FLAG_CACHED | OID_TYPE_KEY}, /* DOT11_OID_DEFKEY1,...DOT11_OID_DEFKEY4 */
91  OID_UNKNOWN(DOT11_OID_STAKEY, 0x12000008),
92  OID_U32(DOT11_OID_REKEYTHRESHOLD, 0x12000009),
93  OID_UNKNOWN(DOT11_OID_STASC, 0x1200000a),
94 
95  OID_U32(DOT11_OID_PRIVTXREJECTED, 0x1a000000),
96  OID_U32(DOT11_OID_PRIVRXPLAIN, 0x1a000001),
97  OID_U32(DOT11_OID_PRIVRXFAILED, 0x1a000002),
98  OID_U32(DOT11_OID_PRIVRXNOKEY, 0x1a000003),
99 
100  OID_U32_C(DOT11_OID_RTSTHRESH, 0x13000000),
101  OID_U32_C(DOT11_OID_FRAGTHRESH, 0x13000001),
102  OID_U32_C(DOT11_OID_SHORTRETRIES, 0x13000002),
103  OID_U32_C(DOT11_OID_LONGRETRIES, 0x13000003),
104  OID_U32_C(DOT11_OID_MAXTXLIFETIME, 0x13000004),
105  OID_U32(DOT11_OID_MAXRXLIFETIME, 0x13000005),
106  OID_U32(DOT11_OID_AUTHRESPTIMEOUT, 0x13000006),
107  OID_U32(DOT11_OID_ASSOCRESPTIMEOUT, 0x13000007),
108 
109  OID_UNKNOWN(DOT11_OID_ALOFT_TABLE, 0x1d000000),
110  OID_UNKNOWN(DOT11_OID_ALOFT_CTRL_TABLE, 0x1d000001),
111  OID_UNKNOWN(DOT11_OID_ALOFT_RETREAT, 0x1d000002),
112  OID_UNKNOWN(DOT11_OID_ALOFT_PROGRESS, 0x1d000003),
113  OID_U32(DOT11_OID_ALOFT_FIXEDRATE, 0x1d000004),
114  OID_UNKNOWN(DOT11_OID_ALOFT_RSSIGRAPH, 0x1d000005),
115  OID_UNKNOWN(DOT11_OID_ALOFT_CONFIG, 0x1d000006),
116 
117  [DOT11_OID_VDCFX] = {0x1b000000, 7, 0, 0},
118  OID_U32(DOT11_OID_MAXFRAMEBURST, 0x1b000008),
119 
120  OID_U32(DOT11_OID_PSM, 0x14000000),
121  OID_U32(DOT11_OID_CAMTIMEOUT, 0x14000001),
122  OID_U32(DOT11_OID_RECEIVEDTIMS, 0x14000002),
123  OID_U32(DOT11_OID_ROAMPREFERENCE, 0x14000003),
124 
125  OID_U32(DOT11_OID_BRIDGELOCAL, 0x15000000),
126  OID_U32(DOT11_OID_CLIENTS, 0x15000001),
128  [DOT11_OID_CLIENTX] = {0x15000003, 2006, 0, 0}, /* DOT11_OID_CLIENTX,...DOT11_OID_CLIENT2007 */
129 
135  OID_U32_C(DOT11_OID_DOT1XENABLE, 0x150007E0),
136  OID_UNKNOWN(DOT11_OID_MICFAILURE, 0x150007E1),
138 
139  OID_U32(DOT11_OID_MPDUTXSUCCESSFUL, 0x16000000),
140  OID_U32(DOT11_OID_MPDUTXONERETRY, 0x16000001),
142  OID_U32(DOT11_OID_MPDUTXFAILED, 0x16000003),
143  OID_U32(DOT11_OID_MPDURXSUCCESSFUL, 0x16000004),
144  OID_U32(DOT11_OID_MPDURXDUPS, 0x16000005),
145  OID_U32(DOT11_OID_RTSSUCCESSFUL, 0x16000006),
146  OID_U32(DOT11_OID_RTSFAILED, 0x16000007),
147  OID_U32(DOT11_OID_ACKFAILED, 0x16000008),
148  OID_U32(DOT11_OID_FRAMERECEIVES, 0x16000009),
149  OID_U32(DOT11_OID_FRAMEERRORS, 0x1600000A),
150  OID_U32(DOT11_OID_FRAMEABORTS, 0x1600000B),
151  OID_U32(DOT11_OID_FRAMEABORTSPHY, 0x1600000C),
152 
153  OID_U32(DOT11_OID_SLOTTIME, 0x17000000),
154  OID_U32(DOT11_OID_CWMIN, 0x17000001),
155  OID_U32(DOT11_OID_CWMAX, 0x17000002),
156  OID_U32(DOT11_OID_ACKWINDOW, 0x17000003),
157  OID_U32(DOT11_OID_ANTENNARX, 0x17000004),
158  OID_U32(DOT11_OID_ANTENNATX, 0x17000005),
159  OID_U32(DOT11_OID_ANTENNADIVERSITY, 0x17000006),
160  OID_U32_C(DOT11_OID_CHANNEL, 0x17000007),
161  OID_U32_C(DOT11_OID_EDTHRESHOLD, 0x17000008),
162  OID_U32(DOT11_OID_PREAMBLESETTINGS, 0x17000009),
163  OID_STRUCT(DOT11_OID_RATES, 0x1700000A, u8[IWMAX_BITRATES + 1],
164  OID_TYPE_RAW),
165  OID_U32(DOT11_OID_CCAMODESUPPORTED, 0x1700000B),
166  OID_U32(DOT11_OID_CCAMODE, 0x1700000C),
167  OID_UNKNOWN(DOT11_OID_RSSIVECTOR, 0x1700000D),
169  OID_U32(DOT11_OID_OUTPUTPOWER, 0x1700000F),
172  OID_U32_C(DOT11_OID_FREQUENCY, 0x17000011),
174  {0x17000012, 0, sizeof (struct obj_frequencies)
175  + sizeof (u16) * IWMAX_FREQ, OID_TYPE_FREQUENCIES},
176 
177  OID_U32(DOT11_OID_NOISEFLOOR, 0x17000013),
179  OID_TYPE_RAW),
181  OID_U32(DOT11_OID_NONERPPROTECTION, 0x17000016),
182  OID_U32(DOT11_OID_SLOTSETTINGS, 0x17000017),
183  OID_U32(DOT11_OID_NONERPTIMEOUT, 0x17000018),
184  OID_U32(DOT11_OID_PROFILES, 0x17000019),
187 
192  OID_UNKNOWN(DOT11_OID_SCAN, 0x18000004),
193  OID_STRUCT_MLMEEX(DOT11_OID_BEACON, 0x18000005),
194  OID_STRUCT_MLMEEX(DOT11_OID_PROBE, 0x18000006),
201 
202  OID_U32(DOT11_OID_NONERPSTATUS, 0x1E000000),
203 
204  OID_U32(DOT11_OID_STATIMEOUT, 0x19000000),
205  OID_U32_C(DOT11_OID_MLMEAUTOLEVEL, 0x19000001),
206  OID_U32(DOT11_OID_BSSTIMEOUT, 0x19000002),
207  [DOT11_OID_ATTACHMENT] = {0x19000003, 0,
208  sizeof(struct obj_attachment), OID_TYPE_ATTACH},
209  OID_STRUCT_C(DOT11_OID_PSMBUFFER, 0x19000004, struct obj_buffer,
210  OID_TYPE_BUFFER),
211 
212  OID_U32(DOT11_OID_BSSS, 0x1C000000),
213  [DOT11_OID_BSSX] = {0x1C000001, 63, sizeof (struct obj_bss),
214  OID_TYPE_BSS}, /*DOT11_OID_BSS1,...,DOT11_OID_BSS64 */
215  OID_STRUCT(DOT11_OID_BSSFIND, 0x1C000042, struct obj_bss, OID_TYPE_BSS),
216  [DOT11_OID_BSSLIST] = {0x1C000043, 0, sizeof (struct
217  obj_bsslist) +
218  sizeof (struct obj_bss[IWMAX_BSS]),
220 
221  OID_UNKNOWN(OID_INL_TUNNEL, 0xFF020000),
222  OID_UNKNOWN(OID_INL_MEMADDR, 0xFF020001),
223  OID_UNKNOWN(OID_INL_MEMORY, 0xFF020002),
224  OID_U32_C(OID_INL_MODE, 0xFF020003),
225  OID_UNKNOWN(OID_INL_COMPONENT_NR, 0xFF020004),
226  OID_STRUCT(OID_INL_VERSION, 0xFF020005, u8[8], OID_TYPE_RAW),
227  OID_UNKNOWN(OID_INL_INTERFACE_ID, 0xFF020006),
228  OID_UNKNOWN(OID_INL_COMPONENT_ID, 0xFF020007),
229  OID_U32_C(OID_INL_CONFIG, 0xFF020008),
231  OID_U32(OID_INL_PHYCAPABILITIES, 0xFF02000D),
232  OID_U32_C(OID_INL_OUTPUTPOWER, 0xFF02000F),
233 
234 };
235 
236 int
238 {
239  int i;
240 
241  priv->mib = kcalloc(OID_NUM_LAST, sizeof (void *), GFP_KERNEL);
242  if (!priv->mib)
243  return -ENOMEM;
244 
245  /* Alloc the cache */
246  for (i = 0; i < OID_NUM_LAST; i++) {
247  if (isl_oid[i].flags & OID_FLAG_CACHED) {
248  priv->mib[i] = kzalloc(isl_oid[i].size *
249  (isl_oid[i].range + 1),
250  GFP_KERNEL);
251  if (!priv->mib[i])
252  return -ENOMEM;
253  } else
254  priv->mib[i] = NULL;
255  }
256 
257  init_rwsem(&priv->mib_sem);
258  prism54_mib_init(priv);
259 
260  return 0;
261 }
262 
263 void
265 {
266  int i;
267 
268  if (!priv->mib)
269  return;
270  for (i = 0; i < OID_NUM_LAST; i++) {
271  kfree(priv->mib[i]);
272  priv->mib[i] = NULL;
273  }
274  kfree(priv->mib);
275  priv->mib = NULL;
276 }
277 
278 void
280 {
281  switch (type) {
282  case OID_TYPE_U32:
283  *(u32 *) data = le32_to_cpu(*(u32 *) data);
284  break;
285  case OID_TYPE_BUFFER:{
286  struct obj_buffer *buff = data;
287  buff->size = le32_to_cpu(buff->size);
288  buff->addr = le32_to_cpu(buff->addr);
289  break;
290  }
291  case OID_TYPE_BSS:{
292  struct obj_bss *bss = data;
293  bss->age = le16_to_cpu(bss->age);
294  bss->channel = le16_to_cpu(bss->channel);
295  bss->capinfo = le16_to_cpu(bss->capinfo);
296  bss->rates = le16_to_cpu(bss->rates);
297  bss->basic_rates = le16_to_cpu(bss->basic_rates);
298  break;
299  }
300  case OID_TYPE_BSSLIST:{
301  struct obj_bsslist *list = data;
302  int i;
303  list->nr = le32_to_cpu(list->nr);
304  for (i = 0; i < list->nr; i++)
305  mgt_le_to_cpu(OID_TYPE_BSS, &list->bsslist[i]);
306  break;
307  }
308  case OID_TYPE_FREQUENCIES:{
309  struct obj_frequencies *freq = data;
310  int i;
311  freq->nr = le16_to_cpu(freq->nr);
312  for (i = 0; i < freq->nr; i++)
313  freq->mhz[i] = le16_to_cpu(freq->mhz[i]);
314  break;
315  }
316  case OID_TYPE_MLME:{
317  struct obj_mlme *mlme = data;
318  mlme->id = le16_to_cpu(mlme->id);
319  mlme->state = le16_to_cpu(mlme->state);
320  mlme->code = le16_to_cpu(mlme->code);
321  break;
322  }
323  case OID_TYPE_MLMEEX:{
324  struct obj_mlmeex *mlme = data;
325  mlme->id = le16_to_cpu(mlme->id);
326  mlme->state = le16_to_cpu(mlme->state);
327  mlme->code = le16_to_cpu(mlme->code);
328  mlme->size = le16_to_cpu(mlme->size);
329  break;
330  }
331  case OID_TYPE_ATTACH:{
332  struct obj_attachment *attach = data;
333  attach->id = le16_to_cpu(attach->id);
334  attach->size = le16_to_cpu(attach->size);
335  break;
336  }
337  case OID_TYPE_SSID:
338  case OID_TYPE_KEY:
339  case OID_TYPE_ADDR:
340  case OID_TYPE_RAW:
341  break;
342  default:
343  BUG();
344  }
345 }
346 
347 static void
348 mgt_cpu_to_le(int type, void *data)
349 {
350  switch (type) {
351  case OID_TYPE_U32:
352  *(u32 *) data = cpu_to_le32(*(u32 *) data);
353  break;
354  case OID_TYPE_BUFFER:{
355  struct obj_buffer *buff = data;
356  buff->size = cpu_to_le32(buff->size);
357  buff->addr = cpu_to_le32(buff->addr);
358  break;
359  }
360  case OID_TYPE_BSS:{
361  struct obj_bss *bss = data;
362  bss->age = cpu_to_le16(bss->age);
363  bss->channel = cpu_to_le16(bss->channel);
364  bss->capinfo = cpu_to_le16(bss->capinfo);
365  bss->rates = cpu_to_le16(bss->rates);
366  bss->basic_rates = cpu_to_le16(bss->basic_rates);
367  break;
368  }
369  case OID_TYPE_BSSLIST:{
370  struct obj_bsslist *list = data;
371  int i;
372  list->nr = cpu_to_le32(list->nr);
373  for (i = 0; i < list->nr; i++)
374  mgt_cpu_to_le(OID_TYPE_BSS, &list->bsslist[i]);
375  break;
376  }
377  case OID_TYPE_FREQUENCIES:{
378  struct obj_frequencies *freq = data;
379  int i;
380  freq->nr = cpu_to_le16(freq->nr);
381  for (i = 0; i < freq->nr; i++)
382  freq->mhz[i] = cpu_to_le16(freq->mhz[i]);
383  break;
384  }
385  case OID_TYPE_MLME:{
386  struct obj_mlme *mlme = data;
387  mlme->id = cpu_to_le16(mlme->id);
388  mlme->state = cpu_to_le16(mlme->state);
389  mlme->code = cpu_to_le16(mlme->code);
390  break;
391  }
392  case OID_TYPE_MLMEEX:{
393  struct obj_mlmeex *mlme = data;
394  mlme->id = cpu_to_le16(mlme->id);
395  mlme->state = cpu_to_le16(mlme->state);
396  mlme->code = cpu_to_le16(mlme->code);
397  mlme->size = cpu_to_le16(mlme->size);
398  break;
399  }
400  case OID_TYPE_ATTACH:{
401  struct obj_attachment *attach = data;
402  attach->id = cpu_to_le16(attach->id);
403  attach->size = cpu_to_le16(attach->size);
404  break;
405  }
406  case OID_TYPE_SSID:
407  case OID_TYPE_KEY:
408  case OID_TYPE_ADDR:
409  case OID_TYPE_RAW:
410  break;
411  default:
412  BUG();
413  }
414 }
415 
416 /* Note : data is modified during this function */
417 
418 int
420 {
421  int ret = 0;
422  struct islpci_mgmtframe *response = NULL;
423  int response_op = PIMFOR_OP_ERROR;
424  int dlen;
425  void *cache, *_data = data;
426  u32 oid;
427 
428  BUG_ON(OID_NUM_LAST <= n);
429  BUG_ON(extra > isl_oid[n].range);
430 
431  if (!priv->mib)
432  /* memory has been freed */
433  return -1;
434 
435  dlen = isl_oid[n].size;
436  cache = priv->mib[n];
437  cache += (cache ? extra * dlen : 0);
438  oid = isl_oid[n].oid + extra;
439 
440  if (_data == NULL)
441  /* we are requested to re-set a cached value */
442  _data = cache;
443  else
444  mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, _data);
445  /* If we are going to write to the cache, we don't want anyone to read
446  * it -> acquire write lock.
447  * Else we could acquire a read lock to be sure we don't bother the
448  * commit process (which takes a write lock). But I'm not sure if it's
449  * needed.
450  */
451  if (cache)
452  down_write(&priv->mib_sem);
453 
454  if (islpci_get_state(priv) >= PRV_STATE_READY) {
455  ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
456  _data, dlen, &response);
457  if (!ret) {
458  response_op = response->header->operation;
459  islpci_mgt_release(response);
460  }
461  if (ret || response_op == PIMFOR_OP_ERROR)
462  ret = -EIO;
463  } else if (!cache)
464  ret = -EIO;
465 
466  if (cache) {
467  if (!ret && data)
468  memcpy(cache, _data, dlen);
469  up_write(&priv->mib_sem);
470  }
471 
472  /* re-set given data to what it was */
473  if (data)
474  mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
475 
476  return ret;
477 }
478 
479 /* None of these are cached */
480 int
481 mgt_set_varlen(islpci_private *priv, enum oid_num_t n, void *data, int extra_len)
482 {
483  int ret = 0;
484  struct islpci_mgmtframe *response;
485  int response_op = PIMFOR_OP_ERROR;
486  int dlen;
487  u32 oid;
488 
489  BUG_ON(OID_NUM_LAST <= n);
490 
491  dlen = isl_oid[n].size;
492  oid = isl_oid[n].oid;
493 
494  mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, data);
495 
496  if (islpci_get_state(priv) >= PRV_STATE_READY) {
497  ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
498  data, dlen + extra_len, &response);
499  if (!ret) {
500  response_op = response->header->operation;
501  islpci_mgt_release(response);
502  }
503  if (ret || response_op == PIMFOR_OP_ERROR)
504  ret = -EIO;
505  } else
506  ret = -EIO;
507 
508  /* re-set given data to what it was */
509  if (data)
510  mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
511 
512  return ret;
513 }
514 
515 int
517  union oid_res_t *res)
518 {
519 
520  int ret = -EIO;
521  int reslen = 0;
522  struct islpci_mgmtframe *response = NULL;
523 
524  int dlen;
525  void *cache, *_res = NULL;
526  u32 oid;
527 
528  BUG_ON(OID_NUM_LAST <= n);
529  BUG_ON(extra > isl_oid[n].range);
530 
531  res->ptr = NULL;
532 
533  if (!priv->mib)
534  /* memory has been freed */
535  return -1;
536 
537  dlen = isl_oid[n].size;
538  cache = priv->mib[n];
539  cache += cache ? extra * dlen : 0;
540  oid = isl_oid[n].oid + extra;
541  reslen = dlen;
542 
543  if (cache)
544  down_read(&priv->mib_sem);
545 
546  if (islpci_get_state(priv) >= PRV_STATE_READY) {
548  oid, data, dlen, &response);
549  if (ret || !response ||
550  response->header->operation == PIMFOR_OP_ERROR) {
551  if (response)
552  islpci_mgt_release(response);
553  ret = -EIO;
554  }
555  if (!ret) {
556  _res = response->data;
557  reslen = response->header->length;
558  }
559  } else if (cache) {
560  _res = cache;
561  ret = 0;
562  }
563  if ((isl_oid[n].flags & OID_FLAG_TYPE) == OID_TYPE_U32)
564  res->u = ret ? 0 : le32_to_cpu(*(u32 *) _res);
565  else {
566  res->ptr = kmalloc(reslen, GFP_KERNEL);
567  BUG_ON(res->ptr == NULL);
568  if (ret)
569  memset(res->ptr, 0, reslen);
570  else {
571  memcpy(res->ptr, _res, reslen);
572  mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE,
573  res->ptr);
574  }
575  }
576  if (cache)
577  up_read(&priv->mib_sem);
578 
579  if (response && !ret)
580  islpci_mgt_release(response);
581 
582  if (reslen > isl_oid[n].size)
584  "mgt_get_request(0x%x): received data length was bigger "
585  "than expected (%d > %d). Memory is probably corrupted...",
586  oid, reslen, isl_oid[n].size);
587 
588  return ret;
589 }
590 
591 /* lock outside */
592 int
594 {
595  int i, ret = 0;
596  struct islpci_mgmtframe *response;
597 
598  for (i = 0; i < n; i++) {
599  struct oid_t *t = &(isl_oid[l[i]]);
600  void *data = priv->mib[l[i]];
601  int j = 0;
602  u32 oid = t->oid;
603  BUG_ON(data == NULL);
604  while (j <= t->range) {
606  oid, data, t->size,
607  &response);
608  if (response) {
609  r |= (response->header->operation == PIMFOR_OP_ERROR);
610  islpci_mgt_release(response);
611  }
612  if (r)
613  printk(KERN_ERR "%s: mgt_commit_list: failure. "
614  "oid=%08x err=%d\n",
615  priv->ndev->name, oid, r);
616  ret |= r;
617  j++;
618  oid++;
619  data += t->size;
620  }
621  }
622  return ret;
623 }
624 
625 /* Lock outside */
626 
627 void
628 mgt_set(islpci_private *priv, enum oid_num_t n, void *data)
629 {
630  BUG_ON(OID_NUM_LAST <= n);
631  BUG_ON(priv->mib[n] == NULL);
632 
633  memcpy(priv->mib[n], data, isl_oid[n].size);
634  mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, priv->mib[n]);
635 }
636 
637 void
639 {
640  BUG_ON(OID_NUM_LAST <= n);
641  BUG_ON(priv->mib[n] == NULL);
642  BUG_ON(res == NULL);
643 
644  memcpy(res, priv->mib[n], isl_oid[n].size);
645  mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, res);
646 }
647 
648 /* Commits the cache. Lock outside. */
649 
650 static enum oid_num_t commit_part1[] = {
652  OID_INL_MODE,
656 };
657 
658 static enum oid_num_t commit_part2[] = {
664  DOT11_OID_DEFKEYX, /* MULTIPLE */
668  /* Do not initialize this - fw < 1.0.4.3 rejects it
669  OID_INL_OUTPUTPOWER,
670  */
671 };
672 
673 /* update the MAC addr. */
674 static int
675 mgt_update_addr(islpci_private *priv)
676 {
677  struct islpci_mgmtframe *res;
678  int ret;
679 
681  isl_oid[GEN_OID_MACADDRESS].oid, NULL,
682  isl_oid[GEN_OID_MACADDRESS].size, &res);
683 
684  if ((ret == 0) && res && (res->header->operation != PIMFOR_OP_ERROR))
685  memcpy(priv->ndev->dev_addr, res->data, 6);
686  else
687  ret = -EIO;
688  if (res)
689  islpci_mgt_release(res);
690 
691  if (ret)
692  printk(KERN_ERR "%s: mgt_update_addr: failure\n", priv->ndev->name);
693  return ret;
694 }
695 
696 int
698 {
699  int rvalue;
700  enum oid_num_t u;
701 
702  if (islpci_get_state(priv) < PRV_STATE_INIT)
703  return 0;
704 
705  rvalue = mgt_commit_list(priv, commit_part1, ARRAY_SIZE(commit_part1));
706 
707  if (priv->iw_mode != IW_MODE_MONITOR)
708  rvalue |= mgt_commit_list(priv, commit_part2, ARRAY_SIZE(commit_part2));
709 
710  u = OID_INL_MODE;
711  rvalue |= mgt_commit_list(priv, &u, 1);
712  rvalue |= mgt_update_addr(priv);
713 
714  if (rvalue) {
715  /* some request have failed. The device might be in an
716  incoherent state. We should reset it ! */
717  printk(KERN_DEBUG "%s: mgt_commit: failure\n", priv->ndev->name);
718  }
719  return rvalue;
720 }
721 
722 /* The following OIDs need to be "unlatched":
723  *
724  * MEDIUMLIMIT,BEACONPERIOD,DTIMPERIOD,ATIMWINDOW,LISTENINTERVAL
725  * FREQUENCY,EXTENDEDRATES.
726  *
727  * The way to do this is to set ESSID. Note though that they may get
728  * unlatch before though by setting another OID. */
729 #if 0
730 void
731 mgt_unlatch_all(islpci_private *priv)
732 {
733  u32 u;
734  int rvalue = 0;
735 
736  if (islpci_get_state(priv) < PRV_STATE_INIT)
737  return;
738 
739  u = DOT11_OID_SSID;
740  rvalue = mgt_commit_list(priv, &u, 1);
741  /* Necessary if in MANUAL RUN mode? */
742 #if 0
743  u = OID_INL_MODE;
744  rvalue |= mgt_commit_list(priv, &u, 1);
745 
747  rvalue |= mgt_commit_list(priv, &u, 1);
748 
749  u = OID_INL_MODE;
750  rvalue |= mgt_commit_list(priv, &u, 1);
751 #endif
752 
753  if (rvalue)
754  printk(KERN_DEBUG "%s: Unlatching OIDs failed\n", priv->ndev->name);
755 }
756 #endif
757 
758 /* This will tell you if you are allowed to answer a mlme(ex) request .*/
759 
760 int
762 {
763  u32 mlmeautolevel;
764  /* Acquire a read lock because if we are in a mode change, it's
765  * possible to answer true, while the card is leaving master to managed
766  * mode. Answering to a mlme in this situation could hang the card.
767  */
768  down_read(&priv->mib_sem);
769  mlmeautolevel =
771  up_read(&priv->mib_sem);
772 
773  return ((priv->iw_mode == IW_MODE_MASTER) &&
774  (mlmeautolevel >= DOT11_MLME_INTERMEDIATE));
775 }
776 
777 enum oid_num_t
779 {
780  int i;
781 
782  for (i = 0; i < OID_NUM_LAST; i++)
783  if (isl_oid[i].oid == oid)
784  return i;
785 
786  printk(KERN_DEBUG "looking for an unknown oid 0x%x", oid);
787 
788  return OID_NUM_LAST;
789 }
790 
791 int
793 {
794  switch (isl_oid[n].flags & OID_FLAG_TYPE) {
795  case OID_TYPE_U32:
796  return snprintf(str, PRIV_STR_SIZE, "%u\n", r->u);
797  break;
798  case OID_TYPE_BUFFER:{
799  struct obj_buffer *buff = r->ptr;
800  return snprintf(str, PRIV_STR_SIZE,
801  "size=%u\naddr=0x%X\n", buff->size,
802  buff->addr);
803  }
804  break;
805  case OID_TYPE_BSS:{
806  struct obj_bss *bss = r->ptr;
807  return snprintf(str, PRIV_STR_SIZE,
808  "age=%u\nchannel=%u\n"
809  "capinfo=0x%X\nrates=0x%X\n"
810  "basic_rates=0x%X\n", bss->age,
811  bss->channel, bss->capinfo,
812  bss->rates, bss->basic_rates);
813  }
814  break;
815  case OID_TYPE_BSSLIST:{
816  struct obj_bsslist *list = r->ptr;
817  int i, k;
818  k = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", list->nr);
819  for (i = 0; i < list->nr; i++)
820  k += snprintf(str + k, PRIV_STR_SIZE - k,
821  "bss[%u] :\nage=%u\nchannel=%u\n"
822  "capinfo=0x%X\nrates=0x%X\n"
823  "basic_rates=0x%X\n",
824  i, list->bsslist[i].age,
825  list->bsslist[i].channel,
826  list->bsslist[i].capinfo,
827  list->bsslist[i].rates,
828  list->bsslist[i].basic_rates);
829  return k;
830  }
831  break;
832  case OID_TYPE_FREQUENCIES:{
833  struct obj_frequencies *freq = r->ptr;
834  int i, t;
835  printk("nr : %u\n", freq->nr);
836  t = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", freq->nr);
837  for (i = 0; i < freq->nr; i++)
838  t += snprintf(str + t, PRIV_STR_SIZE - t,
839  "mhz[%u]=%u\n", i, freq->mhz[i]);
840  return t;
841  }
842  break;
843  case OID_TYPE_MLME:{
844  struct obj_mlme *mlme = r->ptr;
845  return snprintf(str, PRIV_STR_SIZE,
846  "id=0x%X\nstate=0x%X\ncode=0x%X\n",
847  mlme->id, mlme->state, mlme->code);
848  }
849  break;
850  case OID_TYPE_MLMEEX:{
851  struct obj_mlmeex *mlme = r->ptr;
852  return snprintf(str, PRIV_STR_SIZE,
853  "id=0x%X\nstate=0x%X\n"
854  "code=0x%X\nsize=0x%X\n", mlme->id,
855  mlme->state, mlme->code, mlme->size);
856  }
857  break;
858  case OID_TYPE_ATTACH:{
859  struct obj_attachment *attach = r->ptr;
860  return snprintf(str, PRIV_STR_SIZE,
861  "id=%d\nsize=%d\n",
862  attach->id,
863  attach->size);
864  }
865  break;
866  case OID_TYPE_SSID:{
867  struct obj_ssid *ssid = r->ptr;
868  return snprintf(str, PRIV_STR_SIZE,
869  "length=%u\noctets=%.*s\n",
870  ssid->length, ssid->length,
871  ssid->octets);
872  }
873  break;
874  case OID_TYPE_KEY:{
875  struct obj_key *key = r->ptr;
876  int t, i;
877  t = snprintf(str, PRIV_STR_SIZE,
878  "type=0x%X\nlength=0x%X\nkey=0x",
879  key->type, key->length);
880  for (i = 0; i < key->length; i++)
881  t += snprintf(str + t, PRIV_STR_SIZE - t,
882  "%02X:", key->key[i]);
883  t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
884  return t;
885  }
886  break;
887  case OID_TYPE_RAW:
888  case OID_TYPE_ADDR:{
889  unsigned char *buff = r->ptr;
890  int t, i;
891  t = snprintf(str, PRIV_STR_SIZE, "hex data=");
892  for (i = 0; i < isl_oid[n].size; i++)
893  t += snprintf(str + t, PRIV_STR_SIZE - t,
894  "%02X:", buff[i]);
895  t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
896  return t;
897  }
898  break;
899  default:
900  BUG();
901  }
902  return 0;
903 }