Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
omap_vout_vrfb.c
Go to the documentation of this file.
1 /*
2  * omap_vout_vrfb.c
3  *
4  * Copyright (C) 2010 Texas Instruments.
5  *
6  * This file is licensed under the terms of the GNU General Public License
7  * version 2. This program is licensed "as is" without any warranty of any
8  * kind, whether express or implied.
9  *
10  */
11 
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
15 
17 #include <media/v4l2-device.h>
18 
19 #include <plat/dma.h>
20 #include <plat/vrfb.h>
21 
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
24 
25 /*
26  * Function for allocating video buffers
27  */
28 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
29  unsigned int *count, int startindex)
30 {
31  int i, j;
32 
33  for (i = 0; i < *count; i++) {
34  if (!vout->smsshado_virt_addr[i]) {
35  vout->smsshado_virt_addr[i] =
37  &vout->smsshado_phy_addr[i]);
38  }
39  if (!vout->smsshado_virt_addr[i] && startindex != -1) {
40  if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
41  break;
42  }
43  if (!vout->smsshado_virt_addr[i]) {
44  for (j = 0; j < i; j++) {
46  vout->smsshado_virt_addr[j],
47  vout->smsshado_size);
48  vout->smsshado_virt_addr[j] = 0;
49  vout->smsshado_phy_addr[j] = 0;
50  }
51  *count = 0;
52  return -ENOMEM;
53  }
54  memset((void *) vout->smsshado_virt_addr[i], 0,
55  vout->smsshado_size);
56  }
57  return 0;
58 }
59 
60 /*
61  * Wakes up the application once the DMA transfer to VRFB space is completed.
62  */
63 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
64 {
65  struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
66 
67  t->tx_status = 1;
69 }
70 
71 /*
72  * Free VRFB buffers
73  */
75 {
76  int j;
77 
78  for (j = 0; j < VRFB_NUM_BUFS; j++) {
80  vout->smsshado_size);
81  vout->smsshado_virt_addr[j] = 0;
82  vout->smsshado_phy_addr[j] = 0;
83  }
84 }
85 
86 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
87  bool static_vrfb_allocation)
88 {
89  int ret = 0, i, j;
90  struct omap_vout_device *vout;
91  struct video_device *vfd;
92  int image_width, image_height;
93  int vrfb_num_bufs = VRFB_NUM_BUFS;
94  struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
95  struct omap2video_device *vid_dev =
96  container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
97 
98  vout = vid_dev->vouts[vid_num];
99  vfd = vout->vfd;
100 
101  for (i = 0; i < VRFB_NUM_BUFS; i++) {
102  if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
103  dev_info(&pdev->dev, ": VRFB allocation failed\n");
104  for (j = 0; j < i; j++)
106  ret = -ENOMEM;
107  goto free_buffers;
108  }
109  }
110 
111  /* Calculate VRFB memory size */
112  /* allocate for worst case size */
113  image_width = VID_MAX_WIDTH / TILE_SIZE;
114  if (VID_MAX_WIDTH % TILE_SIZE)
115  image_width++;
116 
117  image_width = image_width * TILE_SIZE;
118  image_height = VID_MAX_HEIGHT / TILE_SIZE;
119 
120  if (VID_MAX_HEIGHT % TILE_SIZE)
121  image_height++;
122 
123  image_height = image_height * TILE_SIZE;
124  vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
125 
126  /*
127  * Request and Initialize DMA, for DMA based VRFB transfer
128  */
129  vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
130  vout->vrfb_dma_tx.dma_ch = -1;
131  vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
132  ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
133  omap_vout_vrfb_dma_tx_callback,
134  (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
135  if (ret < 0) {
136  vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
137  dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
138  " video%d\n", vfd->minor);
139  }
140  init_waitqueue_head(&vout->vrfb_dma_tx.wait);
141 
142  /* statically allocated the VRFB buffer is done through
143  commands line aruments */
144  if (static_vrfb_allocation) {
145  if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
146  ret = -ENOMEM;
147  goto release_vrfb_ctx;
148  }
149  vout->vrfb_static_allocation = 1;
150  }
151  return 0;
152 
153 release_vrfb_ctx:
154  for (j = 0; j < VRFB_NUM_BUFS; j++)
156 free_buffers:
158 
159  return ret;
160 }
161 
162 /*
163  * Release the VRFB context once the module exits
164  */
166 {
167  int i;
168 
169  for (i = 0; i < VRFB_NUM_BUFS; i++)
171 
172  if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
173  vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
174  omap_free_dma(vout->vrfb_dma_tx.dma_ch);
175  }
176 }
177 
178 /*
179  * Allocate the buffers for the VRFB space. Data is copied from V4L2
180  * buffers to the VRFB buffers using the DMA engine.
181  */
183  unsigned int *count, unsigned int startindex)
184 {
185  int i;
186  bool yuv_mode;
187 
188  if (!is_rotation_enabled(vout))
189  return 0;
190 
191  /* If rotation is enabled, allocate memory for VRFB space also */
192  *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
193 
194  /* Allocate the VRFB buffers only if the buffers are not
195  * allocated during init time.
196  */
197  if (!vout->vrfb_static_allocation)
198  if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
199  return -ENOMEM;
200 
201  if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
202  vout->dss_mode == OMAP_DSS_COLOR_UYVY)
203  yuv_mode = true;
204  else
205  yuv_mode = false;
206 
207  for (i = 0; i < *count; i++)
208  omap_vrfb_setup(&vout->vrfb_context[i],
209  vout->smsshado_phy_addr[i], vout->pix.width,
210  vout->pix.height, vout->bpp, yuv_mode);
211 
212  return 0;
213 }
214 
216  struct videobuf_buffer *vb)
217 {
218  dma_addr_t dmabuf;
219  struct vid_vrfb_dma *tx;
220  enum dss_rotation rotation;
221  u32 dest_frame_index = 0, src_element_index = 0;
222  u32 dest_element_index = 0, src_frame_index = 0;
223  u32 elem_count = 0, frame_count = 0, pixsize = 2;
224 
225  if (!is_rotation_enabled(vout))
226  return 0;
227 
228  dmabuf = vout->buf_phy_addr[vb->i];
229  /* If rotation is enabled, copy input buffer into VRFB
230  * memory space using DMA. We are copying input buffer
231  * into VRFB memory space of desired angle and DSS will
232  * read image VRFB memory for 0 degree angle
233  */
234  pixsize = vout->bpp * vout->vrfb_bpp;
235  /*
236  * DMA transfer in double index mode
237  */
238 
239  /* Frame index */
240  dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
241  (vout->pix.width * vout->bpp)) + 1;
242 
243  /* Source and destination parameters */
244  src_element_index = 0;
245  src_frame_index = 0;
246  dest_element_index = 1;
247  /* Number of elements per frame */
248  elem_count = vout->pix.width * vout->bpp;
249  frame_count = vout->pix.height;
250  tx = &vout->vrfb_dma_tx;
251  tx->tx_status = 0;
253  (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
254  tx->dev_id, 0x0);
255  /* src_port required only for OMAP1 */
257  dmabuf, src_element_index, src_frame_index);
258  /*set dma source burst mode for VRFB */
260  rotation = calc_rotation(vout);
261 
262  /* dest_port required only for OMAP1 */
264  vout->vrfb_context[vb->i].paddr[0], dest_element_index,
265  dest_frame_index);
266  /*set dma dest burst mode for VRFB */
269 
270  omap_start_dma(tx->dma_ch);
272 
273  if (tx->tx_status == 0) {
274  omap_stop_dma(tx->dma_ch);
275  return -EINVAL;
276  }
277  /* Store buffers physical address into an array. Addresses
278  * from this array will be used to configure DSS */
279  vout->queued_buf_addr[vb->i] = (u8 *)
280  vout->vrfb_context[vb->i].paddr[rotation];
281  return 0;
282 }
283 
284 /*
285  * Calculate the buffer offsets from which the streaming should
286  * start. This offset calculation is mainly required because of
287  * the VRFB 32 pixels alignment with rotation.
288  */
290 {
291  enum dss_rotation rotation;
292  bool mirroring = vout->mirror;
293  struct v4l2_rect *crop = &vout->crop;
294  struct v4l2_pix_format *pix = &vout->pix;
295  int *cropped_offset = &vout->cropped_offset;
296  int vr_ps = 1, ps = 2, temp_ps = 2;
297  int offset = 0, ctop = 0, cleft = 0, line_length = 0;
298 
299  rotation = calc_rotation(vout);
300 
301  if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
302  V4L2_PIX_FMT_UYVY == pix->pixelformat) {
303  if (is_rotation_enabled(vout)) {
304  /*
305  * ps - Actual pixel size for YUYV/UYVY for
306  * VRFB/Mirroring is 4 bytes
307  * vr_ps - Virtually pixel size for YUYV/UYVY is
308  * 2 bytes
309  */
310  ps = 4;
311  vr_ps = 2;
312  } else {
313  ps = 2; /* otherwise the pixel size is 2 byte */
314  }
315  } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
316  ps = 4;
317  } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
318  ps = 3;
319  }
320  vout->ps = ps;
321  vout->vr_ps = vr_ps;
322 
323  if (is_rotation_enabled(vout)) {
324  line_length = MAX_PIXELS_PER_LINE;
325  ctop = (pix->height - crop->height) - crop->top;
326  cleft = (pix->width - crop->width) - crop->left;
327  } else {
328  line_length = pix->width;
329  }
330  vout->line_length = line_length;
331  switch (rotation) {
333  offset = vout->vrfb_context[0].yoffset *
334  vout->vrfb_context[0].bytespp;
335  temp_ps = ps / vr_ps;
336  if (mirroring == 0) {
337  *cropped_offset = offset + line_length *
338  temp_ps * cleft + crop->top * temp_ps;
339  } else {
340  *cropped_offset = offset + line_length * temp_ps *
341  cleft + crop->top * temp_ps + (line_length *
342  ((crop->width / (vr_ps)) - 1) * ps);
343  }
344  break;
346  offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
347  vout->vrfb_context[0].bytespp) +
348  (vout->vrfb_context[0].xoffset *
349  vout->vrfb_context[0].bytespp));
350  if (mirroring == 0) {
351  *cropped_offset = offset + (line_length * ps * ctop) +
352  (cleft / vr_ps) * ps;
353 
354  } else {
355  *cropped_offset = offset + (line_length * ps * ctop) +
356  (cleft / vr_ps) * ps + (line_length *
357  (crop->height - 1) * ps);
358  }
359  break;
361  offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
362  vout->vrfb_context[0].bytespp;
363  temp_ps = ps / vr_ps;
364  if (mirroring == 0) {
365  *cropped_offset = offset + line_length *
366  temp_ps * crop->left + ctop * ps;
367  } else {
368  *cropped_offset = offset + line_length *
369  temp_ps * crop->left + ctop * ps +
370  (line_length * ((crop->width / vr_ps) - 1) *
371  ps);
372  }
373  break;
375  if (mirroring == 0) {
376  *cropped_offset = (line_length * ps) *
377  crop->top + (crop->left / vr_ps) * ps;
378  } else {
379  *cropped_offset = (line_length * ps) *
380  crop->top + (crop->left / vr_ps) * ps +
381  (line_length * (crop->height - 1) * ps);
382  }
383  break;
384  default:
385  *cropped_offset = (line_length * ps * crop->top) /
386  vr_ps + (crop->left * ps) / vr_ps +
387  ((crop->width / vr_ps) - 1) * ps;
388  break;
389  }
390 }