Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
op_model_rm9000.c
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2004 by Ralf Baechle
7  */
8 #include <linux/init.h>
9 #include <linux/oprofile.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp.h>
12 
13 #include "op_impl.h"
14 
15 #define RM9K_COUNTER1_EVENT(event) ((event) << 0)
16 #define RM9K_COUNTER1_SUPERVISOR (1ULL << 7)
17 #define RM9K_COUNTER1_KERNEL (1ULL << 8)
18 #define RM9K_COUNTER1_USER (1ULL << 9)
19 #define RM9K_COUNTER1_ENABLE (1ULL << 10)
20 #define RM9K_COUNTER1_OVERFLOW (1ULL << 15)
21 
22 #define RM9K_COUNTER2_EVENT(event) ((event) << 16)
23 #define RM9K_COUNTER2_SUPERVISOR (1ULL << 23)
24 #define RM9K_COUNTER2_KERNEL (1ULL << 24)
25 #define RM9K_COUNTER2_USER (1ULL << 25)
26 #define RM9K_COUNTER2_ENABLE (1ULL << 26)
27 #define RM9K_COUNTER2_OVERFLOW (1ULL << 31)
28 
29 extern unsigned int rm9000_perfcount_irq;
30 
31 static struct rm9k_register_config {
32  unsigned int control;
33  unsigned int reset_counter1;
34  unsigned int reset_counter2;
35 } reg;
36 
37 /* Compute all of the registers in preparation for enabling profiling. */
38 
39 static void rm9000_reg_setup(struct op_counter_config *ctr)
40 {
41  unsigned int control = 0;
42 
43  /* Compute the performance counter control word. */
44  /* For now count kernel and user mode */
45  if (ctr[0].enabled)
46  control |= RM9K_COUNTER1_EVENT(ctr[0].event) |
50  if (ctr[1].enabled)
51  control |= RM9K_COUNTER2_EVENT(ctr[1].event) |
55  reg.control = control;
56 
57  reg.reset_counter1 = 0x80000000 - ctr[0].count;
58  reg.reset_counter2 = 0x80000000 - ctr[1].count;
59 }
60 
61 /* Program all of the registers in preparation for enabling profiling. */
62 
63 static void rm9000_cpu_setup(void *args)
64 {
65  uint64_t perfcount;
66 
67  perfcount = ((uint64_t) reg.reset_counter2 << 32) | reg.reset_counter1;
68  write_c0_perfcount(perfcount);
69 }
70 
71 static void rm9000_cpu_start(void *args)
72 {
73  /* Start all counters on current CPU */
74  write_c0_perfcontrol(reg.control);
75 }
76 
77 static void rm9000_cpu_stop(void *args)
78 {
79  /* Stop all counters on current CPU */
81 }
82 
83 static irqreturn_t rm9000_perfcount_handler(int irq, void *dev_id)
84 {
85  unsigned int control = read_c0_perfcontrol();
86  struct pt_regs *regs = get_irq_regs();
87  uint32_t counter1, counter2;
88  uint64_t counters;
89 
90  /*
91  * RM9000 combines two 32-bit performance counters into a single
92  * 64-bit coprocessor zero register. To avoid a race updating the
93  * registers we need to stop the counters while we're messing with
94  * them ...
95  */
97 
98  counters = read_c0_perfcount();
99  counter1 = counters;
100  counter2 = counters >> 32;
101 
102  if (control & RM9K_COUNTER1_OVERFLOW) {
103  oprofile_add_sample(regs, 0);
104  counter1 = reg.reset_counter1;
105  }
106  if (control & RM9K_COUNTER2_OVERFLOW) {
107  oprofile_add_sample(regs, 1);
108  counter2 = reg.reset_counter2;
109  }
110 
111  counters = ((uint64_t)counter2 << 32) | counter1;
112  write_c0_perfcount(counters);
113  write_c0_perfcontrol(reg.control);
114 
115  return IRQ_HANDLED;
116 }
117 
118 static int __init rm9000_init(void)
119 {
120  return request_irq(rm9000_perfcount_irq, rm9000_perfcount_handler,
121  0, "Perfcounter", NULL);
122 }
123 
124 static void rm9000_exit(void)
125 {
127 }
128 
130  .reg_setup = rm9000_reg_setup,
131  .cpu_setup = rm9000_cpu_setup,
132  .init = rm9000_init,
133  .exit = rm9000_exit,
134  .cpu_start = rm9000_cpu_start,
135  .cpu_stop = rm9000_cpu_stop,
136  .cpu_type = "mips/rm9000",
137  .num_counters = 2
138 };