Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
packet_history.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
3  * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
4  *
5  * An implementation of the DCCP protocol
6  *
7  * This code has been developed by the University of Waikato WAND
8  * research group. For further information please see http://www.wand.net.nz/
9  * or e-mail Ian McDonald - [email protected]
10  *
11  * This code also uses code from Lulea University, rereleased as GPL by its
12  * authors:
13  * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
14  *
15  * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
16  * and to make it work as a loadable module in the DCCP stack written by
17  * Arnaldo Carvalho de Melo <[email protected]>.
18  *
19  * Copyright (c) 2005 Arnaldo Carvalho de Melo <[email protected]>
20  *
21  * This program is free software; you can redistribute it and/or modify
22  * it under the terms of the GNU General Public License as published by
23  * the Free Software Foundation; either version 2 of the License, or
24  * (at your option) any later version.
25  *
26  * This program is distributed in the hope that it will be useful,
27  * but WITHOUT ANY WARRANTY; without even the implied warranty of
28  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29  * GNU General Public License for more details.
30  *
31  * You should have received a copy of the GNU General Public License
32  * along with this program; if not, write to the Free Software
33  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include "packet_history.h"
39 #include "../../dccp.h"
40 
41 /*
42  * Transmitter History Routines
43  */
44 static struct kmem_cache *tfrc_tx_hist_slab;
45 
47 {
48  tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
49  sizeof(struct tfrc_tx_hist_entry),
51  return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
52 }
53 
55 {
56  if (tfrc_tx_hist_slab != NULL) {
57  kmem_cache_destroy(tfrc_tx_hist_slab);
58  tfrc_tx_hist_slab = NULL;
59  }
60 }
61 
63 {
64  struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
65 
66  if (entry == NULL)
67  return -ENOBUFS;
68  entry->seqno = seqno;
69  entry->stamp = ktime_get_real();
70  entry->next = *headp;
71  *headp = entry;
72  return 0;
73 }
74 
76 {
77  struct tfrc_tx_hist_entry *head = *headp;
78 
79  while (head != NULL) {
80  struct tfrc_tx_hist_entry *next = head->next;
81 
82  kmem_cache_free(tfrc_tx_hist_slab, head);
83  head = next;
84  }
85 
86  *headp = NULL;
87 }
88 
89 /*
90  * Receiver History Routines
91  */
92 static struct kmem_cache *tfrc_rx_hist_slab;
93 
95 {
96  tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
97  sizeof(struct tfrc_rx_hist_entry),
99  return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
100 }
101 
103 {
104  if (tfrc_rx_hist_slab != NULL) {
105  kmem_cache_destroy(tfrc_rx_hist_slab);
106  tfrc_rx_hist_slab = NULL;
107  }
108 }
109 
110 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
111  const struct sk_buff *skb,
112  const u64 ndp)
113 {
114  const struct dccp_hdr *dh = dccp_hdr(skb);
115 
116  entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
117  entry->tfrchrx_ccval = dh->dccph_ccval;
118  entry->tfrchrx_type = dh->dccph_type;
119  entry->tfrchrx_ndp = ndp;
120  entry->tfrchrx_tstamp = ktime_get_real();
121 }
122 
124  const struct sk_buff *skb,
125  const u64 ndp)
126 {
127  struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
128 
129  tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
130 }
131 
132 /* has the packet contained in skb been seen before? */
134 {
135  const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
136  int i;
137 
138  if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
139  return 1;
140 
141  for (i = 1; i <= h->loss_count; i++)
142  if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
143  return 1;
144 
145  return 0;
146 }
147 
148 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
149 {
150  const u8 idx_a = tfrc_rx_hist_index(h, a),
151  idx_b = tfrc_rx_hist_index(h, b);
152  struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
153 
154  h->ring[idx_a] = h->ring[idx_b];
155  h->ring[idx_b] = tmp;
156 }
157 
158 /*
159  * Private helper functions for loss detection.
160  *
161  * In the descriptions, `Si' refers to the sequence number of entry number i,
162  * whose NDP count is `Ni' (lower case is used for variables).
163  * Note: All __xxx_loss functions expect that a test against duplicates has been
164  * performed already: the seqno of the skb must not be less than the seqno
165  * of loss_prev; and it must not equal that of any valid history entry.
166  */
167 static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
168 {
169  u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
170  s1 = DCCP_SKB_CB(skb)->dccpd_seq;
171 
172  if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
173  h->loss_count = 1;
174  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
175  }
176 }
177 
178 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
179 {
180  u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
182  s2 = DCCP_SKB_CB(skb)->dccpd_seq;
183 
184  if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
185  h->loss_count = 2;
186  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
187  return;
188  }
189 
190  /* S0 < S2 < S1 */
191 
192  if (dccp_loss_free(s0, s2, n2)) {
193  u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
194 
195  if (dccp_loss_free(s2, s1, n1)) {
196  /* hole is filled: S0, S2, and S1 are consecutive */
197  h->loss_count = 0;
198  h->loss_start = tfrc_rx_hist_index(h, 1);
199  } else
200  /* gap between S2 and S1: just update loss_prev */
201  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
202 
203  } else { /* gap between S0 and S2 */
204  /*
205  * Reorder history to insert S2 between S0 and S1
206  */
207  tfrc_rx_hist_swap(h, 0, 3);
208  h->loss_start = tfrc_rx_hist_index(h, 3);
209  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
210  h->loss_count = 2;
211  }
212 }
213 
214 /* return 1 if a new loss event has been identified */
215 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
216 {
217  u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
220  s3 = DCCP_SKB_CB(skb)->dccpd_seq;
221 
222  if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
223  h->loss_count = 3;
224  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
225  return 1;
226  }
227 
228  /* S3 < S2 */
229 
230  if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
231  /*
232  * Reorder history to insert S3 between S1 and S2
233  */
234  tfrc_rx_hist_swap(h, 2, 3);
235  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
236  h->loss_count = 3;
237  return 1;
238  }
239 
240  /* S0 < S3 < S1 */
241 
242  if (dccp_loss_free(s0, s3, n3)) {
243  u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
244 
245  if (dccp_loss_free(s3, s1, n1)) {
246  /* hole between S0 and S1 filled by S3 */
247  u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
248 
249  if (dccp_loss_free(s1, s2, n2)) {
250  /* entire hole filled by S0, S3, S1, S2 */
251  h->loss_start = tfrc_rx_hist_index(h, 2);
252  h->loss_count = 0;
253  } else {
254  /* gap remains between S1 and S2 */
255  h->loss_start = tfrc_rx_hist_index(h, 1);
256  h->loss_count = 1;
257  }
258 
259  } else /* gap exists between S3 and S1, loss_count stays at 2 */
260  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
261 
262  return 0;
263  }
264 
265  /*
266  * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
267  * Reorder history to insert S3 between S0 and S1.
268  */
269  tfrc_rx_hist_swap(h, 0, 3);
270  h->loss_start = tfrc_rx_hist_index(h, 3);
271  tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
272  h->loss_count = 3;
273 
274  return 1;
275 }
276 
277 /* recycle RX history records to continue loss detection if necessary */
278 static void __three_after_loss(struct tfrc_rx_hist *h)
279 {
280  /*
281  * At this stage we know already that there is a gap between S0 and S1
282  * (since S0 was the highest sequence number received before detecting
283  * the loss). To recycle the loss record, it is thus only necessary to
284  * check for other possible gaps between S1/S2 and between S2/S3.
285  */
289  u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
290  n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
291 
292  if (dccp_loss_free(s1, s2, n2)) {
293 
294  if (dccp_loss_free(s2, s3, n3)) {
295  /* no gap between S2 and S3: entire hole is filled */
296  h->loss_start = tfrc_rx_hist_index(h, 3);
297  h->loss_count = 0;
298  } else {
299  /* gap between S2 and S3 */
300  h->loss_start = tfrc_rx_hist_index(h, 2);
301  h->loss_count = 1;
302  }
303 
304  } else { /* gap between S1 and S2 */
305  h->loss_start = tfrc_rx_hist_index(h, 1);
306  h->loss_count = 2;
307  }
308 }
309 
327  struct tfrc_loss_hist *lh,
328  struct sk_buff *skb, const u64 ndp,
329  u32 (*calc_first_li)(struct sock *), struct sock *sk)
330 {
331  int is_new_loss = 0;
332 
333  if (h->loss_count == 0) {
334  __do_track_loss(h, skb, ndp);
335  } else if (h->loss_count == 1) {
336  __one_after_loss(h, skb, ndp);
337  } else if (h->loss_count != 2) {
338  DCCP_BUG("invalid loss_count %d", h->loss_count);
339  } else if (__two_after_loss(h, skb, ndp)) {
340  /*
341  * Update Loss Interval database and recycle RX records
342  */
343  is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
344  __three_after_loss(h);
345  }
346  return is_new_loss;
347 }
348 
350 {
351  int i;
352 
353  for (i = 0; i <= TFRC_NDUPACK; i++) {
354  h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
355  if (h->ring[i] == NULL)
356  goto out_free;
357  }
358 
359  h->loss_count = h->loss_start = 0;
360  return 0;
361 
362 out_free:
363  while (i-- != 0) {
364  kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
365  h->ring[i] = NULL;
366  }
367  return -ENOBUFS;
368 }
369 
371 {
372  int i;
373 
374  for (i = 0; i <= TFRC_NDUPACK; ++i)
375  if (h->ring[i] != NULL) {
376  kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
377  h->ring[i] = NULL;
378  }
379 }
380 
384 static inline struct tfrc_rx_hist_entry *
385  tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
386 {
387  return h->ring[0];
388 }
389 
393 static inline struct tfrc_rx_hist_entry *
394  tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
395 {
396  return h->ring[h->rtt_sample_prev];
397 }
398 
404 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
405 {
406  u32 sample = 0,
407  delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
408  tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
409 
410  if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
411  if (h->rtt_sample_prev == 2) { /* previous candidate stored */
412  sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
413  tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
414  if (sample)
415  sample = 4 / sample *
416  ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
417  tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
418  else /*
419  * FIXME: This condition is in principle not
420  * possible but occurs when CCID is used for
421  * two-way data traffic. I have tried to trace
422  * it, but the cause does not seem to be here.
423  */
424  DCCP_BUG("please report to [email protected]"
425  " => prev = %u, last = %u",
426  tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
427  tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
428  } else if (delta_v < 1) {
429  h->rtt_sample_prev = 1;
430  goto keep_ref_for_next_time;
431  }
432 
433  } else if (delta_v == 4) /* optimal match */
434  sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
435  else { /* suboptimal match */
436  h->rtt_sample_prev = 2;
437  goto keep_ref_for_next_time;
438  }
439 
440  if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
441  DCCP_WARN("RTT sample %u too large, using max\n", sample);
442  sample = DCCP_SANE_RTT_MAX;
443  }
444 
445  h->rtt_sample_prev = 0; /* use current entry as next reference */
446 keep_ref_for_next_time:
447 
448  return sample;
449 }