Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
page_cgroup.c
Go to the documentation of this file.
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
13 
14 static unsigned long total_usage;
15 
16 #if !defined(CONFIG_SPARSEMEM)
17 
18 
20 {
21  pgdat->node_page_cgroup = NULL;
22 }
23 
24 struct page_cgroup *lookup_page_cgroup(struct page *page)
25 {
26  unsigned long pfn = page_to_pfn(page);
27  unsigned long offset;
28  struct page_cgroup *base;
29 
30  base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
31 #ifdef CONFIG_DEBUG_VM
32  /*
33  * The sanity checks the page allocator does upon freeing a
34  * page can reach here before the page_cgroup arrays are
35  * allocated when feeding a range of pages to the allocator
36  * for the first time during bootup or memory hotplug.
37  */
38  if (unlikely(!base))
39  return NULL;
40 #endif
41  offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42  return base + offset;
43 }
44 
45 static int __init alloc_node_page_cgroup(int nid)
46 {
47  struct page_cgroup *base;
48  unsigned long table_size;
49  unsigned long nr_pages;
50 
51  nr_pages = NODE_DATA(nid)->node_spanned_pages;
52  if (!nr_pages)
53  return 0;
54 
55  table_size = sizeof(struct page_cgroup) * nr_pages;
56 
58  table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
59  if (!base)
60  return -ENOMEM;
61  NODE_DATA(nid)->node_page_cgroup = base;
62  total_usage += table_size;
63  return 0;
64 }
65 
67 {
68 
69  int nid, fail;
70 
71  if (mem_cgroup_disabled())
72  return;
73 
75  fail = alloc_node_page_cgroup(nid);
76  if (fail)
77  goto fail;
78  }
79  printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
80  printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
81  " don't want memory cgroups\n");
82  return;
83 fail:
84  printk(KERN_CRIT "allocation of page_cgroup failed.\n");
85  printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
86  panic("Out of memory");
87 }
88 
89 #else /* CONFIG_FLAT_NODE_MEM_MAP */
90 
91 struct page_cgroup *lookup_page_cgroup(struct page *page)
92 {
93  unsigned long pfn = page_to_pfn(page);
94  struct mem_section *section = __pfn_to_section(pfn);
95 #ifdef CONFIG_DEBUG_VM
96  /*
97  * The sanity checks the page allocator does upon freeing a
98  * page can reach here before the page_cgroup arrays are
99  * allocated when feeding a range of pages to the allocator
100  * for the first time during bootup or memory hotplug.
101  */
102  if (!section->page_cgroup)
103  return NULL;
104 #endif
105  return section->page_cgroup + pfn;
106 }
107 
108 static void *__meminit alloc_page_cgroup(size_t size, int nid)
109 {
111  void *addr = NULL;
112 
113  addr = alloc_pages_exact_nid(nid, size, flags);
114  if (addr) {
115  kmemleak_alloc(addr, size, 1, flags);
116  return addr;
117  }
118 
119  if (node_state(nid, N_HIGH_MEMORY))
120  addr = vzalloc_node(size, nid);
121  else
122  addr = vzalloc(size);
123 
124  return addr;
125 }
126 
127 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
128 {
129  struct mem_section *section;
130  struct page_cgroup *base;
131  unsigned long table_size;
132 
133  section = __pfn_to_section(pfn);
134 
135  if (section->page_cgroup)
136  return 0;
137 
138  table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
139  base = alloc_page_cgroup(table_size, nid);
140 
141  /*
142  * The value stored in section->page_cgroup is (base - pfn)
143  * and it does not point to the memory block allocated above,
144  * causing kmemleak false positives.
145  */
146  kmemleak_not_leak(base);
147 
148  if (!base) {
149  printk(KERN_ERR "page cgroup allocation failure\n");
150  return -ENOMEM;
151  }
152 
153  /*
154  * The passed "pfn" may not be aligned to SECTION. For the calculation
155  * we need to apply a mask.
156  */
157  pfn &= PAGE_SECTION_MASK;
158  section->page_cgroup = base - pfn;
159  total_usage += table_size;
160  return 0;
161 }
162 #ifdef CONFIG_MEMORY_HOTPLUG
163 static void free_page_cgroup(void *addr)
164 {
165  if (is_vmalloc_addr(addr)) {
166  vfree(addr);
167  } else {
168  struct page *page = virt_to_page(addr);
169  size_t table_size =
170  sizeof(struct page_cgroup) * PAGES_PER_SECTION;
171 
172  BUG_ON(PageReserved(page));
173  free_pages_exact(addr, table_size);
174  }
175 }
176 
177 void __free_page_cgroup(unsigned long pfn)
178 {
179  struct mem_section *ms;
180  struct page_cgroup *base;
181 
182  ms = __pfn_to_section(pfn);
183  if (!ms || !ms->page_cgroup)
184  return;
185  base = ms->page_cgroup + pfn;
186  free_page_cgroup(base);
187  ms->page_cgroup = NULL;
188 }
189 
190 int __meminit online_page_cgroup(unsigned long start_pfn,
191  unsigned long nr_pages,
192  int nid)
193 {
194  unsigned long start, end, pfn;
195  int fail = 0;
196 
197  start = SECTION_ALIGN_DOWN(start_pfn);
198  end = SECTION_ALIGN_UP(start_pfn + nr_pages);
199 
200  if (nid == -1) {
201  /*
202  * In this case, "nid" already exists and contains valid memory.
203  * "start_pfn" passed to us is a pfn which is an arg for
204  * online__pages(), and start_pfn should exist.
205  */
206  nid = pfn_to_nid(start_pfn);
207  VM_BUG_ON(!node_state(nid, N_ONLINE));
208  }
209 
210  for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
211  if (!pfn_present(pfn))
212  continue;
213  fail = init_section_page_cgroup(pfn, nid);
214  }
215  if (!fail)
216  return 0;
217 
218  /* rollback */
219  for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
220  __free_page_cgroup(pfn);
221 
222  return -ENOMEM;
223 }
224 
225 int __meminit offline_page_cgroup(unsigned long start_pfn,
226  unsigned long nr_pages, int nid)
227 {
228  unsigned long start, end, pfn;
229 
230  start = SECTION_ALIGN_DOWN(start_pfn);
231  end = SECTION_ALIGN_UP(start_pfn + nr_pages);
232 
233  for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
234  __free_page_cgroup(pfn);
235  return 0;
236 
237 }
238 
239 static int __meminit page_cgroup_callback(struct notifier_block *self,
240  unsigned long action, void *arg)
241 {
242  struct memory_notify *mn = arg;
243  int ret = 0;
244  switch (action) {
245  case MEM_GOING_ONLINE:
246  ret = online_page_cgroup(mn->start_pfn,
247  mn->nr_pages, mn->status_change_nid);
248  break;
249  case MEM_OFFLINE:
250  offline_page_cgroup(mn->start_pfn,
251  mn->nr_pages, mn->status_change_nid);
252  break;
253  case MEM_CANCEL_ONLINE:
254  case MEM_GOING_OFFLINE:
255  break;
256  case MEM_ONLINE:
257  case MEM_CANCEL_OFFLINE:
258  break;
259  }
260 
261  return notifier_from_errno(ret);
262 }
263 
264 #endif
265 
266 void __init page_cgroup_init(void)
267 {
268  unsigned long pfn;
269  int nid;
270 
271  if (mem_cgroup_disabled())
272  return;
273 
275  unsigned long start_pfn, end_pfn;
276 
277  start_pfn = node_start_pfn(nid);
278  end_pfn = node_end_pfn(nid);
279  /*
280  * start_pfn and end_pfn may not be aligned to SECTION and the
281  * page->flags of out of node pages are not initialized. So we
282  * scan [start_pfn, the biggest section's pfn < end_pfn) here.
283  */
284  for (pfn = start_pfn;
285  pfn < end_pfn;
286  pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
287 
288  if (!pfn_valid(pfn))
289  continue;
290  /*
291  * Nodes's pfns can be overlapping.
292  * We know some arch can have a nodes layout such as
293  * -------------pfn-------------->
294  * N0 | N1 | N2 | N0 | N1 | N2|....
295  */
296  if (pfn_to_nid(pfn) != nid)
297  continue;
298  if (init_section_page_cgroup(pfn, nid))
299  goto oom;
300  }
301  }
302  hotplug_memory_notifier(page_cgroup_callback, 0);
303  printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
304  printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
305  "don't want memory cgroups\n");
306  return;
307 oom:
308  printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
309  panic("Out of memory");
310 }
311 
312 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
313 {
314  return;
315 }
316 
317 #endif
318 
319 
320 #ifdef CONFIG_MEMCG_SWAP
321 
322 static DEFINE_MUTEX(swap_cgroup_mutex);
323 struct swap_cgroup_ctrl {
324  struct page **map;
325  unsigned long length;
327 };
328 
329 static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
330 
331 struct swap_cgroup {
332  unsigned short id;
333 };
334 #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup))
335 
336 /*
337  * SwapCgroup implements "lookup" and "exchange" operations.
338  * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
339  * against SwapCache. At swap_free(), this is accessed directly from swap.
340  *
341  * This means,
342  * - we have no race in "exchange" when we're accessed via SwapCache because
343  * SwapCache(and its swp_entry) is under lock.
344  * - When called via swap_free(), there is no user of this entry and no race.
345  * Then, we don't need lock around "exchange".
346  *
347  * TODO: we can push these buffers out to HIGHMEM.
348  */
349 
350 /*
351  * allocate buffer for swap_cgroup.
352  */
353 static int swap_cgroup_prepare(int type)
354 {
355  struct page *page;
356  struct swap_cgroup_ctrl *ctrl;
357  unsigned long idx, max;
358 
359  ctrl = &swap_cgroup_ctrl[type];
360 
361  for (idx = 0; idx < ctrl->length; idx++) {
362  page = alloc_page(GFP_KERNEL | __GFP_ZERO);
363  if (!page)
364  goto not_enough_page;
365  ctrl->map[idx] = page;
366  }
367  return 0;
368 not_enough_page:
369  max = idx;
370  for (idx = 0; idx < max; idx++)
371  __free_page(ctrl->map[idx]);
372 
373  return -ENOMEM;
374 }
375 
376 static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
377  struct swap_cgroup_ctrl **ctrlp)
378 {
379  pgoff_t offset = swp_offset(ent);
380  struct swap_cgroup_ctrl *ctrl;
381  struct page *mappage;
382  struct swap_cgroup *sc;
383 
384  ctrl = &swap_cgroup_ctrl[swp_type(ent)];
385  if (ctrlp)
386  *ctrlp = ctrl;
387 
388  mappage = ctrl->map[offset / SC_PER_PAGE];
389  sc = page_address(mappage);
390  return sc + offset % SC_PER_PAGE;
391 }
392 
402 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
403  unsigned short old, unsigned short new)
404 {
405  struct swap_cgroup_ctrl *ctrl;
406  struct swap_cgroup *sc;
407  unsigned long flags;
408  unsigned short retval;
409 
410  sc = lookup_swap_cgroup(ent, &ctrl);
411 
412  spin_lock_irqsave(&ctrl->lock, flags);
413  retval = sc->id;
414  if (retval == old)
415  sc->id = new;
416  else
417  retval = 0;
418  spin_unlock_irqrestore(&ctrl->lock, flags);
419  return retval;
420 }
421 
430 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
431 {
432  struct swap_cgroup_ctrl *ctrl;
433  struct swap_cgroup *sc;
434  unsigned short old;
435  unsigned long flags;
436 
437  sc = lookup_swap_cgroup(ent, &ctrl);
438 
439  spin_lock_irqsave(&ctrl->lock, flags);
440  old = sc->id;
441  sc->id = id;
442  spin_unlock_irqrestore(&ctrl->lock, flags);
443 
444  return old;
445 }
446 
453 unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
454 {
455  return lookup_swap_cgroup(ent, NULL)->id;
456 }
457 
458 int swap_cgroup_swapon(int type, unsigned long max_pages)
459 {
460  void *array;
461  unsigned long array_size;
462  unsigned long length;
463  struct swap_cgroup_ctrl *ctrl;
464 
465  if (!do_swap_account)
466  return 0;
467 
468  length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
469  array_size = length * sizeof(void *);
470 
471  array = vzalloc(array_size);
472  if (!array)
473  goto nomem;
474 
475  ctrl = &swap_cgroup_ctrl[type];
476  mutex_lock(&swap_cgroup_mutex);
477  ctrl->length = length;
478  ctrl->map = array;
479  spin_lock_init(&ctrl->lock);
480  if (swap_cgroup_prepare(type)) {
481  /* memory shortage */
482  ctrl->map = NULL;
483  ctrl->length = 0;
484  mutex_unlock(&swap_cgroup_mutex);
485  vfree(array);
486  goto nomem;
487  }
488  mutex_unlock(&swap_cgroup_mutex);
489 
490  return 0;
491 nomem:
492  printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
494  "swap_cgroup can be disabled by swapaccount=0 boot option\n");
495  return -ENOMEM;
496 }
497 
498 void swap_cgroup_swapoff(int type)
499 {
500  struct page **map;
501  unsigned long i, length;
502  struct swap_cgroup_ctrl *ctrl;
503 
504  if (!do_swap_account)
505  return;
506 
507  mutex_lock(&swap_cgroup_mutex);
508  ctrl = &swap_cgroup_ctrl[type];
509  map = ctrl->map;
510  length = ctrl->length;
511  ctrl->map = NULL;
512  ctrl->length = 0;
513  mutex_unlock(&swap_cgroup_mutex);
514 
515  if (map) {
516  for (i = 0; i < length; i++) {
517  struct page *page = map[i];
518  if (page)
519  __free_page(page);
520  }
521  vfree(map);
522  }
523 }
524 
525 #endif