Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
page_isolation.c
Go to the documentation of this file.
1 /*
2  * linux/mm/page_isolation.c
3  */
4 
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
8 #include <linux/memory.h>
9 #include "internal.h"
10 
11 /* called while holding zone->lock */
12 static void set_pageblock_isolate(struct page *page)
13 {
14  if (get_pageblock_migratetype(page) == MIGRATE_ISOLATE)
15  return;
16 
18  page_zone(page)->nr_pageblock_isolate++;
19 }
20 
21 /* called while holding zone->lock */
22 static void restore_pageblock_isolate(struct page *page, int migratetype)
23 {
24  struct zone *zone = page_zone(page);
25  if (WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE))
26  return;
27 
28  BUG_ON(zone->nr_pageblock_isolate <= 0);
29  set_pageblock_migratetype(page, migratetype);
30  zone->nr_pageblock_isolate--;
31 }
32 
33 int set_migratetype_isolate(struct page *page)
34 {
35  struct zone *zone;
36  unsigned long flags, pfn;
37  struct memory_isolate_notify arg;
38  int notifier_ret;
39  int ret = -EBUSY;
40 
41  zone = page_zone(page);
42 
43  spin_lock_irqsave(&zone->lock, flags);
44 
45  pfn = page_to_pfn(page);
46  arg.start_pfn = pfn;
48  arg.pages_found = 0;
49 
50  /*
51  * It may be possible to isolate a pageblock even if the
52  * migratetype is not MIGRATE_MOVABLE. The memory isolation
53  * notifier chain is used by balloon drivers to return the
54  * number of pages in a range that are held by the balloon
55  * driver to shrink memory. If all the pages are accounted for
56  * by balloons, are free, or on the LRU, isolation can continue.
57  * Later, for example, when memory hotplug notifier runs, these
58  * pages reported as "can be isolated" should be isolated(freed)
59  * by the balloon driver through the memory notifier chain.
60  */
61  notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
62  notifier_ret = notifier_to_errno(notifier_ret);
63  if (notifier_ret)
64  goto out;
65  /*
66  * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
67  * We just check MOVABLE pages.
68  */
69  if (!has_unmovable_pages(zone, page, arg.pages_found))
70  ret = 0;
71 
72  /*
73  * immobile means "not-on-lru" paes. If immobile is larger than
74  * removable-by-driver pages reported by notifier, we'll fail.
75  */
76 
77 out:
78  if (!ret) {
79  unsigned long nr_pages;
80  int migratetype = get_pageblock_migratetype(page);
81 
82  set_pageblock_isolate(page);
83  nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
84 
85  __mod_zone_freepage_state(zone, -nr_pages, migratetype);
86  }
87 
88  spin_unlock_irqrestore(&zone->lock, flags);
89  if (!ret)
91  return ret;
92 }
93 
94 void unset_migratetype_isolate(struct page *page, unsigned migratetype)
95 {
96  struct zone *zone;
97  unsigned long flags, nr_pages;
98 
99  zone = page_zone(page);
100  spin_lock_irqsave(&zone->lock, flags);
101  if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
102  goto out;
103  nr_pages = move_freepages_block(zone, page, migratetype);
104  __mod_zone_freepage_state(zone, nr_pages, migratetype);
105  restore_pageblock_isolate(page, migratetype);
106 out:
107  spin_unlock_irqrestore(&zone->lock, flags);
108 }
109 
110 static inline struct page *
111 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
112 {
113  int i;
114  for (i = 0; i < nr_pages; i++)
115  if (pfn_valid_within(pfn + i))
116  break;
117  if (unlikely(i == nr_pages))
118  return NULL;
119  return pfn_to_page(pfn + i);
120 }
121 
122 /*
123  * start_isolate_page_range() -- make page-allocation-type of range of pages
124  * to be MIGRATE_ISOLATE.
125  * @start_pfn: The lower PFN of the range to be isolated.
126  * @end_pfn: The upper PFN of the range to be isolated.
127  * @migratetype: migrate type to set in error recovery.
128  *
129  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
130  * the range will never be allocated. Any free pages and pages freed in the
131  * future will not be allocated again.
132  *
133  * start_pfn/end_pfn must be aligned to pageblock_order.
134  * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
135  */
136 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
137  unsigned migratetype)
138 {
139  unsigned long pfn;
140  unsigned long undo_pfn;
141  struct page *page;
142 
143  BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
144  BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
145 
146  for (pfn = start_pfn;
147  pfn < end_pfn;
148  pfn += pageblock_nr_pages) {
149  page = __first_valid_page(pfn, pageblock_nr_pages);
150  if (page && set_migratetype_isolate(page)) {
151  undo_pfn = pfn;
152  goto undo;
153  }
154  }
155  return 0;
156 undo:
157  for (pfn = start_pfn;
158  pfn < undo_pfn;
159  pfn += pageblock_nr_pages)
160  unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
161 
162  return -EBUSY;
163 }
164 
165 /*
166  * Make isolated pages available again.
167  */
168 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
169  unsigned migratetype)
170 {
171  unsigned long pfn;
172  struct page *page;
173  BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
174  BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
175  for (pfn = start_pfn;
176  pfn < end_pfn;
177  pfn += pageblock_nr_pages) {
178  page = __first_valid_page(pfn, pageblock_nr_pages);
179  if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
180  continue;
181  unset_migratetype_isolate(page, migratetype);
182  }
183  return 0;
184 }
185 /*
186  * Test all pages in the range is free(means isolated) or not.
187  * all pages in [start_pfn...end_pfn) must be in the same zone.
188  * zone->lock must be held before call this.
189  *
190  * Returns 1 if all pages in the range are isolated.
191  */
192 static int
193 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn)
194 {
195  struct page *page;
196 
197  while (pfn < end_pfn) {
198  if (!pfn_valid_within(pfn)) {
199  pfn++;
200  continue;
201  }
202  page = pfn_to_page(pfn);
203  if (PageBuddy(page)) {
204  /*
205  * If race between isolatation and allocation happens,
206  * some free pages could be in MIGRATE_MOVABLE list
207  * although pageblock's migratation type of the page
208  * is MIGRATE_ISOLATE. Catch it and move the page into
209  * MIGRATE_ISOLATE list.
210  */
211  if (get_freepage_migratetype(page) != MIGRATE_ISOLATE) {
212  struct page *end_page;
213 
214  end_page = page + (1 << page_order(page)) - 1;
215  move_freepages(page_zone(page), page, end_page,
217  }
218  pfn += 1 << page_order(page);
219  }
220  else if (page_count(page) == 0 &&
221  get_freepage_migratetype(page) == MIGRATE_ISOLATE)
222  pfn += 1;
223  else
224  break;
225  }
226  if (pfn < end_pfn)
227  return 0;
228  return 1;
229 }
230 
231 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
232 {
233  unsigned long pfn, flags;
234  struct page *page;
235  struct zone *zone;
236  int ret;
237 
238  /*
239  * Note: pageblock_nr_page != MAX_ORDER. Then, chunks of free page
240  * is not aligned to pageblock_nr_pages.
241  * Then we just check pagetype fist.
242  */
243  for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
244  page = __first_valid_page(pfn, pageblock_nr_pages);
245  if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
246  break;
247  }
248  page = __first_valid_page(start_pfn, end_pfn - start_pfn);
249  if ((pfn < end_pfn) || !page)
250  return -EBUSY;
251  /* Check all pages are free or Marked as ISOLATED */
252  zone = page_zone(page);
253  spin_lock_irqsave(&zone->lock, flags);
254  ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn);
255  spin_unlock_irqrestore(&zone->lock, flags);
256  return ret ? 0 : -EBUSY;
257 }
258 
259 struct page *alloc_migrate_target(struct page *page, unsigned long private,
260  int **resultp)
261 {
263 
264  if (PageHighMem(page))
265  gfp_mask |= __GFP_HIGHMEM;
266 
267  return alloc_page(gfp_mask);
268 }