Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
olpc.c
Go to the documentation of this file.
1 /*
2  * Low-level PCI config space access for OLPC systems who lack the VSA
3  * PCI virtualization software.
4  *
5  * Copyright © 2006 Advanced Micro Devices, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
13  * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
14  * that more or less behave like PCI devices, but the hardware doesn't
15  * directly implement the PCI configuration space headers. AMD provides
16  * "VSA" (Virtual System Architecture) software that emulates PCI config
17  * space for these devices, by trapping I/O accesses to PCI config register
18  * (CF8/CFC) and running some code in System Management Mode interrupt state.
19  * On the OLPC platform, we don't want to use that VSA code because
20  * (a) it slows down suspend/resume, and (b) recompiling it requires special
21  * compilers that are hard to get. So instead of letting the complex VSA
22  * code simulate the PCI config registers for the on-chip devices, we
23  * just simulate them the easy way, by inserting the code into the
24  * pci_write_config and pci_read_config path. Most of the config registers
25  * are read-only anyway, so the bulk of the simulation is just table lookup.
26  */
27 
28 #include <linux/pci.h>
29 #include <linux/init.h>
30 #include <asm/olpc.h>
31 #include <asm/geode.h>
32 #include <asm/pci_x86.h>
33 
34 /*
35  * In the tables below, the first two line (8 longwords) are the
36  * size masks that are used when the higher level PCI code determines
37  * the size of the region by writing ~0 to a base address register
38  * and reading back the result.
39  *
40  * The following lines are the values that are read during normal
41  * PCI config access cycles, i.e. not after just having written
42  * ~0 to a base address register.
43  */
44 
45 static const uint32_t lxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
46  0x0, 0x0, 0x0, 0x0,
47  0x0, 0x0, 0x0, 0x0,
48 
49  0x281022, 0x2200005, 0x6000021, 0x80f808, /* AMD Vendor ID */
50  0x0, 0x0, 0x0, 0x0, /* No virtual registers, hence no BAR */
51  0x0, 0x0, 0x0, 0x28100b,
52  0x0, 0x0, 0x0, 0x0,
53  0x0, 0x0, 0x0, 0x0,
54  0x0, 0x0, 0x0, 0x0,
55  0x0, 0x0, 0x0, 0x0,
56 };
57 
58 static const uint32_t gxnb_hdr[] = { /* dev 1 function 0 - devfn = 8 */
59  0xfffffffd, 0x0, 0x0, 0x0,
60  0x0, 0x0, 0x0, 0x0,
61 
62  0x28100b, 0x2200005, 0x6000021, 0x80f808, /* NSC Vendor ID */
63  0xac1d, 0x0, 0x0, 0x0, /* I/O BAR - base of virtual registers */
64  0x0, 0x0, 0x0, 0x28100b,
65  0x0, 0x0, 0x0, 0x0,
66  0x0, 0x0, 0x0, 0x0,
67  0x0, 0x0, 0x0, 0x0,
68  0x0, 0x0, 0x0, 0x0,
69 };
70 
71 static const uint32_t lxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
72  0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
73  0xffffc000, 0x0, 0x0, 0x0,
74 
75  0x20811022, 0x2200003, 0x3000000, 0x0, /* AMD Vendor ID */
76  0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
77  0xfe00c000, 0x0, 0x0, 0x30100b, /* VIP */
78  0x0, 0x0, 0x0, 0x10e, /* INTA, IRQ14 for graphics accel */
79  0x0, 0x0, 0x0, 0x0,
80  0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */
81  0x0, 0x0, 0x0, 0x0,
82 };
83 
84 static const uint32_t gxfb_hdr[] = { /* dev 1 function 1 - devfn = 9 */
85  0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
86  0x0, 0x0, 0x0, 0x0,
87 
88  0x30100b, 0x2200003, 0x3000000, 0x0, /* NSC Vendor ID */
89  0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
90  0x0, 0x0, 0x0, 0x30100b,
91  0x0, 0x0, 0x0, 0x0,
92  0x0, 0x0, 0x0, 0x0,
93  0x3d0, 0x3c0, 0xa0000, 0x0, /* VG IO, VG IO, EGA FB, MONO FB */
94  0x0, 0x0, 0x0, 0x0,
95 };
96 
97 static const uint32_t aes_hdr[] = { /* dev 1 function 2 - devfn = 0xa */
98  0xffffc000, 0x0, 0x0, 0x0,
99  0x0, 0x0, 0x0, 0x0,
100 
101  0x20821022, 0x2a00006, 0x10100000, 0x8, /* NSC Vendor ID */
102  0xfe010000, 0x0, 0x0, 0x0, /* AES registers */
103  0x0, 0x0, 0x0, 0x20821022,
104  0x0, 0x0, 0x0, 0x0,
105  0x0, 0x0, 0x0, 0x0,
106  0x0, 0x0, 0x0, 0x0,
107  0x0, 0x0, 0x0, 0x0,
108 };
109 
110 
111 static const uint32_t isa_hdr[] = { /* dev f function 0 - devfn = 78 */
112  0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
113  0xffffff81, 0xffffffc1, 0x0, 0x0,
114 
115  0x20901022, 0x2a00049, 0x6010003, 0x802000,
116  0x18b1, 0x1001, 0x1801, 0x1881, /* SMB-8 GPIO-256 MFGPT-64 IRQ-32 */
117  0x1401, 0x1841, 0x0, 0x20901022, /* PMS-128 ACPI-64 */
118  0x0, 0x0, 0x0, 0x0,
119  0x0, 0x0, 0x0, 0x0,
120  0x0, 0x0, 0x0, 0xaa5b, /* IRQ steering */
121  0x0, 0x0, 0x0, 0x0,
122 };
123 
124 static const uint32_t ac97_hdr[] = { /* dev f function 3 - devfn = 7b */
125  0xffffff81, 0x0, 0x0, 0x0,
126  0x0, 0x0, 0x0, 0x0,
127 
128  0x20931022, 0x2a00041, 0x4010001, 0x0,
129  0x1481, 0x0, 0x0, 0x0, /* I/O BAR-128 */
130  0x0, 0x0, 0x0, 0x20931022,
131  0x0, 0x0, 0x0, 0x205, /* IntB, IRQ5 */
132  0x0, 0x0, 0x0, 0x0,
133  0x0, 0x0, 0x0, 0x0,
134  0x0, 0x0, 0x0, 0x0,
135 };
136 
137 static const uint32_t ohci_hdr[] = { /* dev f function 4 - devfn = 7c */
138  0xfffff000, 0x0, 0x0, 0x0,
139  0x0, 0x0, 0x0, 0x0,
140 
141  0x20941022, 0x2300006, 0xc031002, 0x0,
142  0xfe01a000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */
143  0x0, 0x0, 0x0, 0x20941022,
144  0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */
145  0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O,
146  44 is mask 8103 (power control) */
147  0x0, 0x0, 0x0, 0x0,
148  0x0, 0x0, 0x0, 0x0,
149 };
150 
151 static const uint32_t ehci_hdr[] = { /* dev f function 4 - devfn = 7d */
152  0xfffff000, 0x0, 0x0, 0x0,
153  0x0, 0x0, 0x0, 0x0,
154 
155  0x20951022, 0x2300006, 0xc032002, 0x0,
156  0xfe01b000, 0x0, 0x0, 0x0, /* MEMBAR-1000 */
157  0x0, 0x0, 0x0, 0x20951022,
158  0x0, 0x40, 0x0, 0x40a, /* CapPtr INT-D, IRQA */
159  0xc8020001, 0x0, 0x0, 0x0, /* Capabilities - 40 is R/O, 44 is
160  mask 8103 (power control) */
161 #if 0
162  0x1, 0x40080000, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */
163 #endif
164  0x01000001, 0x0, 0x0, 0x0, /* EECP - see EHCI spec section 2.1.7 */
165  0x2020, 0x0, 0x0, 0x0, /* (EHCI page 8) 60 SBRN (R/O),
166  61 FLADJ (R/W), PORTWAKECAP */
167 };
168 
169 static uint32_t ff_loc = ~0;
170 static uint32_t zero_loc;
171 static int bar_probing; /* Set after a write of ~0 to a BAR */
172 static int is_lx;
173 
174 #define NB_SLOT 0x1 /* Northbridge - GX chip - Device 1 */
175 #define SB_SLOT 0xf /* Southbridge - CS5536 chip - Device F */
176 
177 static int is_simulated(unsigned int bus, unsigned int devfn)
178 {
179  return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
180  (PCI_SLOT(devfn) == SB_SLOT)));
181 }
182 
183 static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
184 {
185  uint32_t addr;
186 
187  /*
188  * This is a little bit tricky. The header maps consist of
189  * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
190  * In the normal case, when not probing a BAR's size, we want
191  * to access the header data, so we add 0x20 to the reg offset,
192  * thus skipping the size mask area.
193  * In the BAR probing case, we want to access the size mask for
194  * the BAR, so we subtract 0x10 (the config header offset for
195  * BAR0), and don't skip the size mask area.
196  */
197 
198  addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
199 
200  bar_probing = 0;
201  return (uint32_t *)addr;
202 }
203 
204 static int pci_olpc_read(unsigned int seg, unsigned int bus,
205  unsigned int devfn, int reg, int len, uint32_t *value)
206 {
207  uint32_t *addr;
208 
209  WARN_ON(seg);
210 
211  /* Use the hardware mechanism for non-simulated devices */
212  if (!is_simulated(bus, devfn))
213  return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
214 
215  /*
216  * No device has config registers past 0x70, so we save table space
217  * by not storing entries for the nonexistent registers
218  */
219  if (reg >= 0x70)
220  addr = &zero_loc;
221  else {
222  switch (devfn) {
223  case 0x8:
224  addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
225  break;
226  case 0x9:
227  addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
228  break;
229  case 0xa:
230  addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
231  break;
232  case 0x78:
233  addr = hdr_addr(isa_hdr, reg);
234  break;
235  case 0x7b:
236  addr = hdr_addr(ac97_hdr, reg);
237  break;
238  case 0x7c:
239  addr = hdr_addr(ohci_hdr, reg);
240  break;
241  case 0x7d:
242  addr = hdr_addr(ehci_hdr, reg);
243  break;
244  default:
245  addr = &ff_loc;
246  break;
247  }
248  }
249  switch (len) {
250  case 1:
251  *value = *(uint8_t *)addr;
252  break;
253  case 2:
254  *value = *(uint16_t *)addr;
255  break;
256  case 4:
257  *value = *addr;
258  break;
259  default:
260  BUG();
261  }
262 
263  return 0;
264 }
265 
266 static int pci_olpc_write(unsigned int seg, unsigned int bus,
267  unsigned int devfn, int reg, int len, uint32_t value)
268 {
269  WARN_ON(seg);
270 
271  /* Use the hardware mechanism for non-simulated devices */
272  if (!is_simulated(bus, devfn))
273  return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
274 
275  /* XXX we may want to extend this to simulate EHCI power management */
276 
277  /*
278  * Mostly we just discard writes, but if the write is a size probe
279  * (i.e. writing ~0 to a BAR), we remember it and arrange to return
280  * the appropriate size mask on the next read. This is cheating
281  * to some extent, because it depends on the fact that the next
282  * access after such a write will always be a read to the same BAR.
283  */
284 
285  if ((reg >= 0x10) && (reg < 0x2c)) {
286  /* write is to a BAR */
287  if (value == ~0)
288  bar_probing = 1;
289  } else {
290  /*
291  * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
292  * CACHE_LINE_SIZE, or PM registers.
293  */
294  if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
295  (reg != PCI_LATENCY_TIMER) &&
296  (reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
297  printk(KERN_WARNING "OLPC PCI: Config write to devfn"
298  " %x reg %x value %x\n", devfn, reg, value);
299  }
300 
301  return 0;
302 }
303 
304 static const struct pci_raw_ops pci_olpc_conf = {
305  .read = pci_olpc_read,
306  .write = pci_olpc_write,
307 };
308 
310 {
311  printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
312  raw_pci_ops = &pci_olpc_conf;
313  is_lx = is_geode_lx();
314  return 0;
315 }