Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pnode.c
Go to the documentation of this file.
1 /*
2  * linux/fs/pnode.c
3  *
4  * (C) Copyright IBM Corporation 2005.
5  * Released under GPL v2.
6  * Author : Ram Pai ([email protected])
7  *
8  */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include "internal.h"
13 #include "pnode.h"
14 
15 /* return the next shared peer mount of @p */
16 static inline struct mount *next_peer(struct mount *p)
17 {
18  return list_entry(p->mnt_share.next, struct mount, mnt_share);
19 }
20 
21 static inline struct mount *first_slave(struct mount *p)
22 {
23  return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
24 }
25 
26 static inline struct mount *next_slave(struct mount *p)
27 {
28  return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
29 }
30 
31 static struct mount *get_peer_under_root(struct mount *mnt,
32  struct mnt_namespace *ns,
33  const struct path *root)
34 {
35  struct mount *m = mnt;
36 
37  do {
38  /* Check the namespace first for optimization */
39  if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
40  return m;
41 
42  m = next_peer(m);
43  } while (m != mnt);
44 
45  return NULL;
46 }
47 
48 /*
49  * Get ID of closest dominating peer group having a representative
50  * under the given root.
51  *
52  * Caller must hold namespace_sem
53  */
54 int get_dominating_id(struct mount *mnt, const struct path *root)
55 {
56  struct mount *m;
57 
58  for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
59  struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
60  if (d)
61  return d->mnt_group_id;
62  }
63 
64  return 0;
65 }
66 
67 static int do_make_slave(struct mount *mnt)
68 {
69  struct mount *peer_mnt = mnt, *master = mnt->mnt_master;
70  struct mount *slave_mnt;
71 
72  /*
73  * slave 'mnt' to a peer mount that has the
74  * same root dentry. If none is available then
75  * slave it to anything that is available.
76  */
77  while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
78  peer_mnt->mnt.mnt_root != mnt->mnt.mnt_root) ;
79 
80  if (peer_mnt == mnt) {
81  peer_mnt = next_peer(mnt);
82  if (peer_mnt == mnt)
83  peer_mnt = NULL;
84  }
85  if (IS_MNT_SHARED(mnt) && list_empty(&mnt->mnt_share))
87 
88  list_del_init(&mnt->mnt_share);
89  mnt->mnt_group_id = 0;
90 
91  if (peer_mnt)
92  master = peer_mnt;
93 
94  if (master) {
96  slave_mnt->mnt_master = master;
97  list_move(&mnt->mnt_slave, &master->mnt_slave_list);
98  list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
99  INIT_LIST_HEAD(&mnt->mnt_slave_list);
100  } else {
101  struct list_head *p = &mnt->mnt_slave_list;
102  while (!list_empty(p)) {
103  slave_mnt = list_first_entry(p,
104  struct mount, mnt_slave);
105  list_del_init(&slave_mnt->mnt_slave);
106  slave_mnt->mnt_master = NULL;
107  }
108  }
109  mnt->mnt_master = master;
110  CLEAR_MNT_SHARED(mnt);
111  return 0;
112 }
113 
114 /*
115  * vfsmount lock must be held for write
116  */
117 void change_mnt_propagation(struct mount *mnt, int type)
118 {
119  if (type == MS_SHARED) {
120  set_mnt_shared(mnt);
121  return;
122  }
123  do_make_slave(mnt);
124  if (type != MS_SLAVE) {
125  list_del_init(&mnt->mnt_slave);
126  mnt->mnt_master = NULL;
127  if (type == MS_UNBINDABLE)
128  mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
129  else
130  mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
131  }
132 }
133 
134 /*
135  * get the next mount in the propagation tree.
136  * @m: the mount seen last
137  * @origin: the original mount from where the tree walk initiated
138  *
139  * Note that peer groups form contiguous segments of slave lists.
140  * We rely on that in get_source() to be able to find out if
141  * vfsmount found while iterating with propagation_next() is
142  * a peer of one we'd found earlier.
143  */
144 static struct mount *propagation_next(struct mount *m,
145  struct mount *origin)
146 {
147  /* are there any slaves of this mount? */
148  if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
149  return first_slave(m);
150 
151  while (1) {
152  struct mount *master = m->mnt_master;
153 
154  if (master == origin->mnt_master) {
155  struct mount *next = next_peer(m);
156  return (next == origin) ? NULL : next;
157  } else if (m->mnt_slave.next != &master->mnt_slave_list)
158  return next_slave(m);
159 
160  /* back at master */
161  m = master;
162  }
163 }
164 
165 /*
166  * return the source mount to be used for cloning
167  *
168  * @dest the current destination mount
169  * @last_dest the last seen destination mount
170  * @last_src the last seen source mount
171  * @type return CL_SLAVE if the new mount has to be
172  * cloned as a slave.
173  */
174 static struct mount *get_source(struct mount *dest,
175  struct mount *last_dest,
176  struct mount *last_src,
177  int *type)
178 {
179  struct mount *p_last_src = NULL;
180  struct mount *p_last_dest = NULL;
181 
182  while (last_dest != dest->mnt_master) {
183  p_last_dest = last_dest;
184  p_last_src = last_src;
185  last_dest = last_dest->mnt_master;
186  last_src = last_src->mnt_master;
187  }
188 
189  if (p_last_dest) {
190  do {
191  p_last_dest = next_peer(p_last_dest);
192  } while (IS_MNT_NEW(p_last_dest));
193  /* is that a peer of the earlier? */
194  if (dest == p_last_dest) {
195  *type = CL_MAKE_SHARED;
196  return p_last_src;
197  }
198  }
199  /* slave of the earlier, then */
200  *type = CL_SLAVE;
201  /* beginning of peer group among the slaves? */
202  if (IS_MNT_SHARED(dest))
203  *type |= CL_MAKE_SHARED;
204  return last_src;
205 }
206 
207 /*
208  * mount 'source_mnt' under the destination 'dest_mnt' at
209  * dentry 'dest_dentry'. And propagate that mount to
210  * all the peer and slave mounts of 'dest_mnt'.
211  * Link all the new mounts into a propagation tree headed at
212  * source_mnt. Also link all the new mounts using ->mnt_list
213  * headed at source_mnt's ->mnt_list
214  *
215  * @dest_mnt: destination mount.
216  * @dest_dentry: destination dentry.
217  * @source_mnt: source mount.
218  * @tree_list : list of heads of trees to be attached.
219  */
220 int propagate_mnt(struct mount *dest_mnt, struct dentry *dest_dentry,
221  struct mount *source_mnt, struct list_head *tree_list)
222 {
223  struct mount *m, *child;
224  int ret = 0;
225  struct mount *prev_dest_mnt = dest_mnt;
226  struct mount *prev_src_mnt = source_mnt;
227  LIST_HEAD(tmp_list);
228  LIST_HEAD(umount_list);
229 
230  for (m = propagation_next(dest_mnt, dest_mnt); m;
231  m = propagation_next(m, dest_mnt)) {
232  int type;
233  struct mount *source;
234 
235  if (IS_MNT_NEW(m))
236  continue;
237 
238  source = get_source(m, prev_dest_mnt, prev_src_mnt, &type);
239 
240  child = copy_tree(source, source->mnt.mnt_root, type);
241  if (IS_ERR(child)) {
242  ret = PTR_ERR(child);
243  list_splice(tree_list, tmp_list.prev);
244  goto out;
245  }
246 
247  if (is_subdir(dest_dentry, m->mnt.mnt_root)) {
248  mnt_set_mountpoint(m, dest_dentry, child);
249  list_add_tail(&child->mnt_hash, tree_list);
250  } else {
251  /*
252  * This can happen if the parent mount was bind mounted
253  * on some subdirectory of a shared/slave mount.
254  */
255  list_add_tail(&child->mnt_hash, &tmp_list);
256  }
257  prev_dest_mnt = m;
258  prev_src_mnt = child;
259  }
260 out:
262  while (!list_empty(&tmp_list)) {
263  child = list_first_entry(&tmp_list, struct mount, mnt_hash);
264  umount_tree(child, 0, &umount_list);
265  }
267  release_mounts(&umount_list);
268  return ret;
269 }
270 
271 /*
272  * return true if the refcount is greater than count
273  */
274 static inline int do_refcount_check(struct mount *mnt, int count)
275 {
276  int mycount = mnt_get_count(mnt) - mnt->mnt_ghosts;
277  return (mycount > count);
278 }
279 
280 /*
281  * check if the mount 'mnt' can be unmounted successfully.
282  * @mnt: the mount to be checked for unmount
283  * NOTE: unmounting 'mnt' would naturally propagate to all
284  * other mounts its parent propagates to.
285  * Check if any of these mounts that **do not have submounts**
286  * have more references than 'refcnt'. If so return busy.
287  *
288  * vfsmount lock must be held for write
289  */
290 int propagate_mount_busy(struct mount *mnt, int refcnt)
291 {
292  struct mount *m, *child;
293  struct mount *parent = mnt->mnt_parent;
294  int ret = 0;
295 
296  if (mnt == parent)
297  return do_refcount_check(mnt, refcnt);
298 
299  /*
300  * quickly check if the current mount can be unmounted.
301  * If not, we don't have to go checking for all other
302  * mounts
303  */
304  if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
305  return 1;
306 
307  for (m = propagation_next(parent, parent); m;
308  m = propagation_next(m, parent)) {
309  child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint, 0);
310  if (child && list_empty(&child->mnt_mounts) &&
311  (ret = do_refcount_check(child, 1)))
312  break;
313  }
314  return ret;
315 }
316 
317 /*
318  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
319  * parent propagates to.
320  */
321 static void __propagate_umount(struct mount *mnt)
322 {
323  struct mount *parent = mnt->mnt_parent;
324  struct mount *m;
325 
326  BUG_ON(parent == mnt);
327 
328  for (m = propagation_next(parent, parent); m;
329  m = propagation_next(m, parent)) {
330 
331  struct mount *child = __lookup_mnt(&m->mnt,
332  mnt->mnt_mountpoint, 0);
333  /*
334  * umount the child only if the child has no
335  * other children
336  */
337  if (child && list_empty(&child->mnt_mounts))
338  list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
339  }
340 }
341 
342 /*
343  * collect all mounts that receive propagation from the mount in @list,
344  * and return these additional mounts in the same list.
345  * @list: the list of mounts to be unmounted.
346  *
347  * vfsmount lock must be held for write
348  */
350 {
351  struct mount *mnt;
352 
353  list_for_each_entry(mnt, list, mnt_hash)
354  __propagate_umount(mnt);
355  return 0;
356 }