Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
init_64.c
Go to the documentation of this file.
1 /*
2  * PowerPC version
3  * Copyright (C) 1995-1996 Gary Thomas ([email protected])
4  *
5  * Modifications by Paul Mackerras (PowerMac) ([email protected])
6  * and Cort Dougan (PReP) ([email protected])
7  * Copyright (C) 1996 Paul Mackerras
8  *
9  * Derived from "arch/i386/mm/init.c"
10  * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
11  *
12  * Dave Engebretsen <[email protected]>
13  * Rework for PPC64 port.
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
42 #include <linux/poison.h>
43 #include <linux/memblock.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 
47 #include <asm/pgalloc.h>
48 #include <asm/page.h>
49 #include <asm/prom.h>
50 #include <asm/rtas.h>
51 #include <asm/io.h>
52 #include <asm/mmu_context.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu.h>
55 #include <asm/uaccess.h>
56 #include <asm/smp.h>
57 #include <asm/machdep.h>
58 #include <asm/tlb.h>
59 #include <asm/eeh.h>
60 #include <asm/processor.h>
61 #include <asm/mmzone.h>
62 #include <asm/cputable.h>
63 #include <asm/sections.h>
64 #include <asm/iommu.h>
65 #include <asm/vdso.h>
66 
67 #include "mmu_decl.h"
68 
69 #ifdef CONFIG_PPC_STD_MMU_64
70 #if PGTABLE_RANGE > USER_VSID_RANGE
71 #warning Limited user VSID range means pagetable space is wasted
72 #endif
73 
74 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
75 #warning TASK_SIZE is smaller than it needs to be.
76 #endif
77 #endif /* CONFIG_PPC_STD_MMU_64 */
78 
83 
84 static void pgd_ctor(void *addr)
85 {
86  memset(addr, 0, PGD_TABLE_SIZE);
87 }
88 
89 static void pmd_ctor(void *addr)
90 {
91  memset(addr, 0, PMD_TABLE_SIZE);
92 }
93 
95 
96 /*
97  * Create a kmem_cache() for pagetables. This is not used for PTE
98  * pages - they're linked to struct page, come from the normal free
99  * pages pool and have a different entry size (see real_pte_t) to
100  * everything else. Caches created by this function are used for all
101  * the higher level pagetables, and for hugepage pagetables.
102  */
103 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
104 {
105  char *name;
106  unsigned long table_size = sizeof(void *) << shift;
107  unsigned long align = table_size;
108 
109  /* When batching pgtable pointers for RCU freeing, we store
110  * the index size in the low bits. Table alignment must be
111  * big enough to fit it.
112  *
113  * Likewise, hugeapge pagetable pointers contain a (different)
114  * shift value in the low bits. All tables must be aligned so
115  * as to leave enough 0 bits in the address to contain it. */
116  unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
117  HUGEPD_SHIFT_MASK + 1);
118  struct kmem_cache *new;
119 
120  /* It would be nice if this was a BUILD_BUG_ON(), but at the
121  * moment, gcc doesn't seem to recognize is_power_of_2 as a
122  * constant expression, so so much for that. */
123  BUG_ON(!is_power_of_2(minalign));
124  BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
125 
126  if (PGT_CACHE(shift))
127  return; /* Already have a cache of this size */
128 
129  align = max_t(unsigned long, align, minalign);
130  name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
131  new = kmem_cache_create(name, table_size, align, 0, ctor);
132  PGT_CACHE(shift) = new;
133 
134  pr_debug("Allocated pgtable cache for order %d\n", shift);
135 }
136 
137 
139 {
143  panic("Couldn't allocate pgtable caches");
144 
145  /* In all current configs, when the PUD index exists it's the
146  * same size as either the pgd or pmd index. Verify that the
147  * initialization above has also created a PUD cache. This
148  * will need re-examiniation if we add new possibilities for
149  * the pagetable layout. */
151 }
152 
153 #ifdef CONFIG_SPARSEMEM_VMEMMAP
154 /*
155  * Given an address within the vmemmap, determine the pfn of the page that
156  * represents the start of the section it is within. Note that we have to
157  * do this by hand as the proffered address may not be correctly aligned.
158  * Subtraction of non-aligned pointers produces undefined results.
159  */
160 static unsigned long __meminit vmemmap_section_start(unsigned long page)
161 {
162  unsigned long offset = page - ((unsigned long)(vmemmap));
163 
164  /* Return the pfn of the start of the section. */
165  return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
166 }
167 
168 /*
169  * Check if this vmemmap page is already initialised. If any section
170  * which overlaps this vmemmap page is initialised then this page is
171  * initialised already.
172  */
173 static int __meminit vmemmap_populated(unsigned long start, int page_size)
174 {
175  unsigned long end = start + page_size;
176 
177  for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
178  if (pfn_valid(vmemmap_section_start(start)))
179  return 1;
180 
181  return 0;
182 }
183 
184 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
185  *
186  * On Book3E CPUs, the vmemmap is currently mapped in the top half of
187  * the vmalloc space using normal page tables, though the size of
188  * pages encoded in the PTEs can be different
189  */
190 
191 #ifdef CONFIG_PPC_BOOK3E
192 static void __meminit vmemmap_create_mapping(unsigned long start,
193  unsigned long page_size,
194  unsigned long phys)
195 {
196  /* Create a PTE encoding without page size */
197  unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
199 
200  /* PTEs only contain page size encodings up to 32M */
201  BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
202 
203  /* Encode the size in the PTE */
204  flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
205 
206  /* For each PTE for that area, map things. Note that we don't
207  * increment phys because all PTEs are of the large size and
208  * thus must have the low bits clear
209  */
210  for (i = 0; i < page_size; i += PAGE_SIZE)
211  BUG_ON(map_kernel_page(start + i, phys, flags));
212 }
213 #else /* CONFIG_PPC_BOOK3E */
214 static void __meminit vmemmap_create_mapping(unsigned long start,
215  unsigned long page_size,
216  unsigned long phys)
217 {
218  int mapped = htab_bolt_mapping(start, start + page_size, phys,
219  PAGE_KERNEL, mmu_vmemmap_psize,
221  BUG_ON(mapped < 0);
222 }
223 #endif /* CONFIG_PPC_BOOK3E */
224 
225 struct vmemmap_backing *vmemmap_list;
226 
227 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
228 {
229  static struct vmemmap_backing *next;
230  static int num_left;
231 
232  /* allocate a page when required and hand out chunks */
233  if (!next || !num_left) {
234  next = vmemmap_alloc_block(PAGE_SIZE, node);
235  if (unlikely(!next)) {
236  WARN_ON(1);
237  return NULL;
238  }
239  num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
240  }
241 
242  num_left--;
243 
244  return next++;
245 }
246 
247 static __meminit void vmemmap_list_populate(unsigned long phys,
248  unsigned long start,
249  int node)
250 {
251  struct vmemmap_backing *vmem_back;
252 
253  vmem_back = vmemmap_list_alloc(node);
254  if (unlikely(!vmem_back)) {
255  WARN_ON(1);
256  return;
257  }
258 
259  vmem_back->phys = phys;
260  vmem_back->virt_addr = start;
261  vmem_back->list = vmemmap_list;
262 
263  vmemmap_list = vmem_back;
264 }
265 
266 int __meminit vmemmap_populate(struct page *start_page,
267  unsigned long nr_pages, int node)
268 {
269  unsigned long start = (unsigned long)start_page;
270  unsigned long end = (unsigned long)(start_page + nr_pages);
271  unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
272 
273  /* Align to the page size of the linear mapping. */
274  start = _ALIGN_DOWN(start, page_size);
275 
276  pr_debug("vmemmap_populate page %p, %ld pages, node %d\n",
277  start_page, nr_pages, node);
278  pr_debug(" -> map %lx..%lx\n", start, end);
279 
280  for (; start < end; start += page_size) {
281  void *p;
282 
283  if (vmemmap_populated(start, page_size))
284  continue;
285 
286  p = vmemmap_alloc_block(page_size, node);
287  if (!p)
288  return -ENOMEM;
289 
290  vmemmap_list_populate(__pa(p), start, node);
291 
292  pr_debug(" * %016lx..%016lx allocated at %p\n",
293  start, start + page_size, p);
294 
295  vmemmap_create_mapping(start, page_size, __pa(p));
296  }
297 
298  return 0;
299 }
300 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
301