Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
raid6test.c
Go to the documentation of this file.
1 /*
2  * asynchronous raid6 recovery self test
3  * Copyright (c) 2009, Intel Corporation.
4  *
5  * based on drivers/md/raid6test/test.c:
6  * Copyright 2002-2007 H. Peter Anvin
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  */
22 #include <linux/async_tx.h>
23 #include <linux/gfp.h>
24 #include <linux/mm.h>
25 #include <linux/random.h>
26 #include <linux/module.h>
27 
28 #undef pr
29 #define pr(fmt, args...) pr_info("raid6test: " fmt, ##args)
30 
31 #define NDISKS 16 /* Including P and Q */
32 
33 static struct page *dataptrs[NDISKS];
34 static addr_conv_t addr_conv[NDISKS];
35 static struct page *data[NDISKS+3];
36 static struct page *spare;
37 static struct page *recovi;
38 static struct page *recovj;
39 
40 static void callback(void *param)
41 {
42  struct completion *cmp = param;
43 
44  complete(cmp);
45 }
46 
47 static void makedata(int disks)
48 {
49  int i, j;
50 
51  for (i = 0; i < disks; i++) {
52  for (j = 0; j < PAGE_SIZE/sizeof(u32); j += sizeof(u32)) {
53  u32 *p = page_address(data[i]) + j;
54 
55  *p = random32();
56  }
57 
58  dataptrs[i] = data[i];
59  }
60 }
61 
62 static char disk_type(int d, int disks)
63 {
64  if (d == disks - 2)
65  return 'P';
66  else if (d == disks - 1)
67  return 'Q';
68  else
69  return 'D';
70 }
71 
72 /* Recover two failed blocks. */
73 static void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, struct page **ptrs)
74 {
75  struct async_submit_ctl submit;
76  struct completion cmp;
78  enum sum_check_flags result = ~0;
79 
80  if (faila > failb)
81  swap(faila, failb);
82 
83  if (failb == disks-1) {
84  if (faila == disks-2) {
85  /* P+Q failure. Just rebuild the syndrome. */
86  init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
87  tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
88  } else {
89  struct page *blocks[disks];
90  struct page *dest;
91  int count = 0;
92  int i;
93 
94  /* data+Q failure. Reconstruct data from P,
95  * then rebuild syndrome
96  */
97  for (i = disks; i-- ; ) {
98  if (i == faila || i == failb)
99  continue;
100  blocks[count++] = ptrs[i];
101  }
102  dest = ptrs[faila];
103  init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
104  NULL, NULL, addr_conv);
105  tx = async_xor(dest, blocks, 0, count, bytes, &submit);
106 
107  init_async_submit(&submit, 0, tx, NULL, NULL, addr_conv);
108  tx = async_gen_syndrome(ptrs, 0, disks, bytes, &submit);
109  }
110  } else {
111  if (failb == disks-2) {
112  /* data+P failure. */
113  init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
114  tx = async_raid6_datap_recov(disks, bytes, faila, ptrs, &submit);
115  } else {
116  /* data+data failure. */
117  init_async_submit(&submit, 0, NULL, NULL, NULL, addr_conv);
118  tx = async_raid6_2data_recov(disks, bytes, faila, failb, ptrs, &submit);
119  }
120  }
121  init_completion(&cmp);
122  init_async_submit(&submit, ASYNC_TX_ACK, tx, callback, &cmp, addr_conv);
123  tx = async_syndrome_val(ptrs, 0, disks, bytes, &result, spare, &submit);
124  async_tx_issue_pending(tx);
125 
126  if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0)
127  pr("%s: timeout! (faila: %d failb: %d disks: %d)\n",
128  __func__, faila, failb, disks);
129 
130  if (result != 0)
131  pr("%s: validation failure! faila: %d failb: %d sum_check_flags: %x\n",
132  __func__, faila, failb, result);
133 }
134 
135 static int test_disks(int i, int j, int disks)
136 {
137  int erra, errb;
138 
139  memset(page_address(recovi), 0xf0, PAGE_SIZE);
140  memset(page_address(recovj), 0xba, PAGE_SIZE);
141 
142  dataptrs[i] = recovi;
143  dataptrs[j] = recovj;
144 
145  raid6_dual_recov(disks, PAGE_SIZE, i, j, dataptrs);
146 
147  erra = memcmp(page_address(data[i]), page_address(recovi), PAGE_SIZE);
148  errb = memcmp(page_address(data[j]), page_address(recovj), PAGE_SIZE);
149 
150  pr("%s(%d, %d): faila=%3d(%c) failb=%3d(%c) %s\n",
151  __func__, i, j, i, disk_type(i, disks), j, disk_type(j, disks),
152  (!erra && !errb) ? "OK" : !erra ? "ERRB" : !errb ? "ERRA" : "ERRAB");
153 
154  dataptrs[i] = data[i];
155  dataptrs[j] = data[j];
156 
157  return erra || errb;
158 }
159 
160 static int test(int disks, int *tests)
161 {
162  struct dma_async_tx_descriptor *tx;
163  struct async_submit_ctl submit;
164  struct completion cmp;
165  int err = 0;
166  int i, j;
167 
168  recovi = data[disks];
169  recovj = data[disks+1];
170  spare = data[disks+2];
171 
172  makedata(disks);
173 
174  /* Nuke syndromes */
175  memset(page_address(data[disks-2]), 0xee, PAGE_SIZE);
176  memset(page_address(data[disks-1]), 0xee, PAGE_SIZE);
177 
178  /* Generate assumed good syndrome */
179  init_completion(&cmp);
180  init_async_submit(&submit, ASYNC_TX_ACK, NULL, callback, &cmp, addr_conv);
181  tx = async_gen_syndrome(dataptrs, 0, disks, PAGE_SIZE, &submit);
182  async_tx_issue_pending(tx);
183 
184  if (wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000)) == 0) {
185  pr("error: initial gen_syndrome(%d) timed out\n", disks);
186  return 1;
187  }
188 
189  pr("testing the %d-disk case...\n", disks);
190  for (i = 0; i < disks-1; i++)
191  for (j = i+1; j < disks; j++) {
192  (*tests)++;
193  err += test_disks(i, j, disks);
194  }
195 
196  return err;
197 }
198 
199 
200 static int raid6_test(void)
201 {
202  int err = 0;
203  int tests = 0;
204  int i;
205 
206  for (i = 0; i < NDISKS+3; i++) {
207  data[i] = alloc_page(GFP_KERNEL);
208  if (!data[i]) {
209  while (i--)
210  put_page(data[i]);
211  return -ENOMEM;
212  }
213  }
214 
215  /* the 4-disk and 5-disk cases are special for the recovery code */
216  if (NDISKS > 4)
217  err += test(4, &tests);
218  if (NDISKS > 5)
219  err += test(5, &tests);
220  /* the 11 and 12 disk cases are special for ioatdma (p-disabled
221  * q-continuation without extended descriptor)
222  */
223  if (NDISKS > 12) {
224  err += test(11, &tests);
225  err += test(12, &tests);
226  }
227  err += test(NDISKS, &tests);
228 
229  pr("\n");
230  pr("complete (%d tests, %d failure%s)\n",
231  tests, err, err == 1 ? "" : "s");
232 
233  for (i = 0; i < NDISKS+3; i++)
234  put_page(data[i]);
235 
236  return 0;
237 }
238 
239 static void raid6_test_exit(void)
240 {
241 }
242 
243 /* when compiled-in wait for drivers to load first (assumes dma drivers
244  * are also compliled-in)
245  */
246 late_initcall(raid6_test);
247 module_exit(raid6_test_exit);
248 MODULE_AUTHOR("Dan Williams <[email protected]>");
249 MODULE_DESCRIPTION("asynchronous RAID-6 recovery self tests");
250 MODULE_LICENSE("GPL");