Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rc80211_pid_algo.c
Go to the documentation of this file.
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005, Devicescape Software, Inc.
4  * Copyright 2007, Mattias Nissler <[email protected]>
5  * Copyright 2007-2008, Stefano Brivio <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/types.h>
14 #include <linux/skbuff.h>
15 #include <linux/debugfs.h>
16 #include <linux/slab.h>
17 #include <net/mac80211.h>
18 #include "rate.h"
19 #include "mesh.h"
20 #include "rc80211_pid.h"
21 
22 
23 /* This is an implementation of a TX rate control algorithm that uses a PID
24  * controller. Given a target failed frames rate, the controller decides about
25  * TX rate changes to meet the target failed frames rate.
26  *
27  * The controller basically computes the following:
28  *
29  * adj = CP * err + CI * err_avg + CD * (err - last_err) * (1 + sharpening)
30  *
31  * where
32  * adj adjustment value that is used to switch TX rate (see below)
33  * err current error: target vs. current failed frames percentage
34  * last_err last error
35  * err_avg average (i.e. poor man's integral) of recent errors
36  * sharpening non-zero when fast response is needed (i.e. right after
37  * association or no frames sent for a long time), heading
38  * to zero over time
39  * CP Proportional coefficient
40  * CI Integral coefficient
41  * CD Derivative coefficient
42  *
43  * CP, CI, CD are subject to careful tuning.
44  *
45  * The integral component uses a exponential moving average approach instead of
46  * an actual sliding window. The advantage is that we don't need to keep an
47  * array of the last N error values and computation is easier.
48  *
49  * Once we have the adj value, we map it to a rate by means of a learning
50  * algorithm. This algorithm keeps the state of the percentual failed frames
51  * difference between rates. The behaviour of the lowest available rate is kept
52  * as a reference value, and every time we switch between two rates, we compute
53  * the difference between the failed frames each rate exhibited. By doing so,
54  * we compare behaviours which different rates exhibited in adjacent timeslices,
55  * thus the comparison is minimally affected by external conditions. This
56  * difference gets propagated to the whole set of measurements, so that the
57  * reference is always the same. Periodically, we normalize this set so that
58  * recent events weigh the most. By comparing the adj value with this set, we
59  * avoid pejorative switches to lower rates and allow for switches to higher
60  * rates if they behaved well.
61  *
62  * Note that for the computations we use a fixed-point representation to avoid
63  * floating point arithmetic. Hence, all values are shifted left by
64  * RC_PID_ARITH_SHIFT.
65  */
66 
67 
68 /* Adjust the rate while ensuring that we won't switch to a lower rate if it
69  * exhibited a worse failed frames behaviour and we'll choose the highest rate
70  * whose failed frames behaviour is not worse than the one of the original rate
71  * target. While at it, check that the new rate is valid. */
72 static void rate_control_pid_adjust_rate(struct ieee80211_supported_band *sband,
73  struct ieee80211_sta *sta,
74  struct rc_pid_sta_info *spinfo, int adj,
75  struct rc_pid_rateinfo *rinfo)
76 {
77  int cur_sorted, new_sorted, probe, tmp, n_bitrates, band;
78  int cur = spinfo->txrate_idx;
79 
80  band = sband->band;
81  n_bitrates = sband->n_bitrates;
82 
83  /* Map passed arguments to sorted values. */
84  cur_sorted = rinfo[cur].rev_index;
85  new_sorted = cur_sorted + adj;
86 
87  /* Check limits. */
88  if (new_sorted < 0)
89  new_sorted = rinfo[0].rev_index;
90  else if (new_sorted >= n_bitrates)
91  new_sorted = rinfo[n_bitrates - 1].rev_index;
92 
93  tmp = new_sorted;
94 
95  if (adj < 0) {
96  /* Ensure that the rate decrease isn't disadvantageous. */
97  for (probe = cur_sorted; probe >= new_sorted; probe--)
98  if (rinfo[probe].diff <= rinfo[cur_sorted].diff &&
99  rate_supported(sta, band, rinfo[probe].index))
100  tmp = probe;
101  } else {
102  /* Look for rate increase with zero (or below) cost. */
103  for (probe = new_sorted + 1; probe < n_bitrates; probe++)
104  if (rinfo[probe].diff <= rinfo[new_sorted].diff &&
105  rate_supported(sta, band, rinfo[probe].index))
106  tmp = probe;
107  }
108 
109  /* Fit the rate found to the nearest supported rate. */
110  do {
111  if (rate_supported(sta, band, rinfo[tmp].index)) {
112  spinfo->txrate_idx = rinfo[tmp].index;
113  break;
114  }
115  if (adj < 0)
116  tmp--;
117  else
118  tmp++;
119  } while (tmp < n_bitrates && tmp >= 0);
120 
121 #ifdef CONFIG_MAC80211_DEBUGFS
122  rate_control_pid_event_rate_change(&spinfo->events,
123  spinfo->txrate_idx,
124  sband->bitrates[spinfo->txrate_idx].bitrate);
125 #endif
126 }
127 
128 /* Normalize the failed frames per-rate differences. */
129 static void rate_control_pid_normalize(struct rc_pid_info *pinfo, int l)
130 {
131  int i, norm_offset = pinfo->norm_offset;
132  struct rc_pid_rateinfo *r = pinfo->rinfo;
133 
134  if (r[0].diff > norm_offset)
135  r[0].diff -= norm_offset;
136  else if (r[0].diff < -norm_offset)
137  r[0].diff += norm_offset;
138  for (i = 0; i < l - 1; i++)
139  if (r[i + 1].diff > r[i].diff + norm_offset)
140  r[i + 1].diff -= norm_offset;
141  else if (r[i + 1].diff <= r[i].diff)
142  r[i + 1].diff += norm_offset;
143 }
144 
145 static void rate_control_pid_sample(struct rc_pid_info *pinfo,
146  struct ieee80211_supported_band *sband,
147  struct ieee80211_sta *sta,
148  struct rc_pid_sta_info *spinfo)
149 {
150  struct rc_pid_rateinfo *rinfo = pinfo->rinfo;
151  u32 pf;
152  s32 err_avg;
153  u32 err_prop;
154  u32 err_int;
155  u32 err_der;
156  int adj, i, j, tmp;
157  unsigned long period;
158 
159  /* In case nothing happened during the previous control interval, turn
160  * the sharpening factor on. */
161  period = msecs_to_jiffies(pinfo->sampling_period);
162  if (jiffies - spinfo->last_sample > 2 * period)
163  spinfo->sharp_cnt = pinfo->sharpen_duration;
164 
165  spinfo->last_sample = jiffies;
166 
167  /* This should never happen, but in case, we assume the old sample is
168  * still a good measurement and copy it. */
169  if (unlikely(spinfo->tx_num_xmit == 0))
170  pf = spinfo->last_pf;
171  else
172  pf = spinfo->tx_num_failed * 100 / spinfo->tx_num_xmit;
173 
174  spinfo->tx_num_xmit = 0;
175  spinfo->tx_num_failed = 0;
176 
177  /* If we just switched rate, update the rate behaviour info. */
178  if (pinfo->oldrate != spinfo->txrate_idx) {
179 
180  i = rinfo[pinfo->oldrate].rev_index;
181  j = rinfo[spinfo->txrate_idx].rev_index;
182 
183  tmp = (pf - spinfo->last_pf);
185 
186  rinfo[j].diff = rinfo[i].diff + tmp;
187  pinfo->oldrate = spinfo->txrate_idx;
188  }
189  rate_control_pid_normalize(pinfo, sband->n_bitrates);
190 
191  /* Compute the proportional, integral and derivative errors. */
192  err_prop = (pinfo->target - pf) << RC_PID_ARITH_SHIFT;
193 
194  err_avg = spinfo->err_avg_sc >> pinfo->smoothing_shift;
195  spinfo->err_avg_sc = spinfo->err_avg_sc - err_avg + err_prop;
196  err_int = spinfo->err_avg_sc >> pinfo->smoothing_shift;
197 
198  err_der = (pf - spinfo->last_pf) *
199  (1 + pinfo->sharpen_factor * spinfo->sharp_cnt);
200  spinfo->last_pf = pf;
201  if (spinfo->sharp_cnt)
202  spinfo->sharp_cnt--;
203 
204 #ifdef CONFIG_MAC80211_DEBUGFS
205  rate_control_pid_event_pf_sample(&spinfo->events, pf, err_prop, err_int,
206  err_der);
207 #endif
208 
209  /* Compute the controller output. */
210  adj = (err_prop * pinfo->coeff_p + err_int * pinfo->coeff_i
211  + err_der * pinfo->coeff_d);
213 
214  /* Change rate. */
215  if (adj)
216  rate_control_pid_adjust_rate(sband, sta, spinfo, adj, rinfo);
217 }
218 
219 static void rate_control_pid_tx_status(void *priv, struct ieee80211_supported_band *sband,
220  struct ieee80211_sta *sta, void *priv_sta,
221  struct sk_buff *skb)
222 {
223  struct rc_pid_info *pinfo = priv;
224  struct rc_pid_sta_info *spinfo = priv_sta;
225  unsigned long period;
226  struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
227 
228  if (!spinfo)
229  return;
230 
231  /* Ignore all frames that were sent with a different rate than the rate
232  * we currently advise mac80211 to use. */
233  if (info->status.rates[0].idx != spinfo->txrate_idx)
234  return;
235 
236  spinfo->tx_num_xmit++;
237 
238 #ifdef CONFIG_MAC80211_DEBUGFS
239  rate_control_pid_event_tx_status(&spinfo->events, info);
240 #endif
241 
242  /* We count frames that totally failed to be transmitted as two bad
243  * frames, those that made it out but had some retries as one good and
244  * one bad frame. */
245  if (!(info->flags & IEEE80211_TX_STAT_ACK)) {
246  spinfo->tx_num_failed += 2;
247  spinfo->tx_num_xmit++;
248  } else if (info->status.rates[0].count > 1) {
249  spinfo->tx_num_failed++;
250  spinfo->tx_num_xmit++;
251  }
252 
253  /* Update PID controller state. */
254  period = msecs_to_jiffies(pinfo->sampling_period);
255  if (time_after(jiffies, spinfo->last_sample + period))
256  rate_control_pid_sample(pinfo, sband, sta, spinfo);
257 }
258 
259 static void
260 rate_control_pid_get_rate(void *priv, struct ieee80211_sta *sta,
261  void *priv_sta,
262  struct ieee80211_tx_rate_control *txrc)
263 {
264  struct sk_buff *skb = txrc->skb;
265  struct ieee80211_supported_band *sband = txrc->sband;
266  struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
267  struct rc_pid_sta_info *spinfo = priv_sta;
268  int rateidx;
269 
270  if (txrc->rts)
271  info->control.rates[0].count =
272  txrc->hw->conf.long_frame_max_tx_count;
273  else
274  info->control.rates[0].count =
275  txrc->hw->conf.short_frame_max_tx_count;
276 
277  /* Send management frames and NO_ACK data using lowest rate. */
278  if (rate_control_send_low(sta, priv_sta, txrc))
279  return;
280 
281  rateidx = spinfo->txrate_idx;
282 
283  if (rateidx >= sband->n_bitrates)
284  rateidx = sband->n_bitrates - 1;
285 
286  info->control.rates[0].idx = rateidx;
287 
288 #ifdef CONFIG_MAC80211_DEBUGFS
289  rate_control_pid_event_tx_rate(&spinfo->events,
290  rateidx, sband->bitrates[rateidx].bitrate);
291 #endif
292 }
293 
294 static void
295 rate_control_pid_rate_init(void *priv, struct ieee80211_supported_band *sband,
296  struct ieee80211_sta *sta, void *priv_sta)
297 {
298  struct rc_pid_sta_info *spinfo = priv_sta;
299  struct rc_pid_info *pinfo = priv;
300  struct rc_pid_rateinfo *rinfo = pinfo->rinfo;
301  int i, j, tmp;
302  bool s;
303 
304  /* TODO: This routine should consider using RSSI from previous packets
305  * as we need to have IEEE 802.1X auth succeed immediately after assoc..
306  * Until that method is implemented, we will use the lowest supported
307  * rate as a workaround. */
308 
309  /* Sort the rates. This is optimized for the most common case (i.e.
310  * almost-sorted CCK+OFDM rates). Kind of bubble-sort with reversed
311  * mapping too. */
312  for (i = 0; i < sband->n_bitrates; i++) {
313  rinfo[i].index = i;
314  rinfo[i].rev_index = i;
315  if (RC_PID_FAST_START)
316  rinfo[i].diff = 0;
317  else
318  rinfo[i].diff = i * pinfo->norm_offset;
319  }
320  for (i = 1; i < sband->n_bitrates; i++) {
321  s = false;
322  for (j = 0; j < sband->n_bitrates - i; j++)
323  if (unlikely(sband->bitrates[rinfo[j].index].bitrate >
324  sband->bitrates[rinfo[j + 1].index].bitrate)) {
325  tmp = rinfo[j].index;
326  rinfo[j].index = rinfo[j + 1].index;
327  rinfo[j + 1].index = tmp;
328  rinfo[rinfo[j].index].rev_index = j;
329  rinfo[rinfo[j + 1].index].rev_index = j + 1;
330  s = true;
331  }
332  if (!s)
333  break;
334  }
335 
336  spinfo->txrate_idx = rate_lowest_index(sband, sta);
337 }
338 
339 static void *rate_control_pid_alloc(struct ieee80211_hw *hw,
340  struct dentry *debugfsdir)
341 {
342  struct rc_pid_info *pinfo;
343  struct rc_pid_rateinfo *rinfo;
344  struct ieee80211_supported_band *sband;
345  int i, max_rates = 0;
346 #ifdef CONFIG_MAC80211_DEBUGFS
347  struct rc_pid_debugfs_entries *de;
348 #endif
349 
350  pinfo = kmalloc(sizeof(*pinfo), GFP_ATOMIC);
351  if (!pinfo)
352  return NULL;
353 
354  for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
355  sband = hw->wiphy->bands[i];
356  if (sband && sband->n_bitrates > max_rates)
357  max_rates = sband->n_bitrates;
358  }
359 
360  rinfo = kmalloc(sizeof(*rinfo) * max_rates, GFP_ATOMIC);
361  if (!rinfo) {
362  kfree(pinfo);
363  return NULL;
364  }
365 
366  pinfo->target = RC_PID_TARGET_PF;
368  pinfo->coeff_p = RC_PID_COEFF_P;
369  pinfo->coeff_i = RC_PID_COEFF_I;
370  pinfo->coeff_d = RC_PID_COEFF_D;
375  pinfo->rinfo = rinfo;
376  pinfo->oldrate = 0;
377 
378 #ifdef CONFIG_MAC80211_DEBUGFS
379  de = &pinfo->dentries;
380  de->target = debugfs_create_u32("target_pf", S_IRUSR | S_IWUSR,
381  debugfsdir, &pinfo->target);
382  de->sampling_period = debugfs_create_u32("sampling_period",
383  S_IRUSR | S_IWUSR, debugfsdir,
384  &pinfo->sampling_period);
385  de->coeff_p = debugfs_create_u32("coeff_p", S_IRUSR | S_IWUSR,
386  debugfsdir, (u32 *)&pinfo->coeff_p);
387  de->coeff_i = debugfs_create_u32("coeff_i", S_IRUSR | S_IWUSR,
388  debugfsdir, (u32 *)&pinfo->coeff_i);
389  de->coeff_d = debugfs_create_u32("coeff_d", S_IRUSR | S_IWUSR,
390  debugfsdir, (u32 *)&pinfo->coeff_d);
391  de->smoothing_shift = debugfs_create_u32("smoothing_shift",
392  S_IRUSR | S_IWUSR, debugfsdir,
393  &pinfo->smoothing_shift);
394  de->sharpen_factor = debugfs_create_u32("sharpen_factor",
395  S_IRUSR | S_IWUSR, debugfsdir,
396  &pinfo->sharpen_factor);
397  de->sharpen_duration = debugfs_create_u32("sharpen_duration",
398  S_IRUSR | S_IWUSR, debugfsdir,
399  &pinfo->sharpen_duration);
400  de->norm_offset = debugfs_create_u32("norm_offset",
401  S_IRUSR | S_IWUSR, debugfsdir,
402  &pinfo->norm_offset);
403 #endif
404 
405  return pinfo;
406 }
407 
408 static void rate_control_pid_free(void *priv)
409 {
410  struct rc_pid_info *pinfo = priv;
411 #ifdef CONFIG_MAC80211_DEBUGFS
412  struct rc_pid_debugfs_entries *de = &pinfo->dentries;
413 
418  debugfs_remove(de->coeff_d);
419  debugfs_remove(de->coeff_i);
420  debugfs_remove(de->coeff_p);
422  debugfs_remove(de->target);
423 #endif
424 
425  kfree(pinfo->rinfo);
426  kfree(pinfo);
427 }
428 
429 static void *rate_control_pid_alloc_sta(void *priv, struct ieee80211_sta *sta,
430  gfp_t gfp)
431 {
432  struct rc_pid_sta_info *spinfo;
433 
434  spinfo = kzalloc(sizeof(*spinfo), gfp);
435  if (spinfo == NULL)
436  return NULL;
437 
438  spinfo->last_sample = jiffies;
439 
440 #ifdef CONFIG_MAC80211_DEBUGFS
441  spin_lock_init(&spinfo->events.lock);
442  init_waitqueue_head(&spinfo->events.waitqueue);
443 #endif
444 
445  return spinfo;
446 }
447 
448 static void rate_control_pid_free_sta(void *priv, struct ieee80211_sta *sta,
449  void *priv_sta)
450 {
451  kfree(priv_sta);
452 }
453 
454 static struct rate_control_ops mac80211_rcpid = {
455  .name = "pid",
456  .tx_status = rate_control_pid_tx_status,
457  .get_rate = rate_control_pid_get_rate,
458  .rate_init = rate_control_pid_rate_init,
459  .alloc = rate_control_pid_alloc,
460  .free = rate_control_pid_free,
461  .alloc_sta = rate_control_pid_alloc_sta,
462  .free_sta = rate_control_pid_free_sta,
463 #ifdef CONFIG_MAC80211_DEBUGFS
464  .add_sta_debugfs = rate_control_pid_add_sta_debugfs,
465  .remove_sta_debugfs = rate_control_pid_remove_sta_debugfs,
466 #endif
467 };
468 
470 {
471  return ieee80211_rate_control_register(&mac80211_rcpid);
472 }
473 
475 {
476  ieee80211_rate_control_unregister(&mac80211_rcpid);
477 }