Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rdma.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2007 Oracle. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  * Redistribution and use in source and binary forms, with or
11  * without modification, are permitted provided that the following
12  * conditions are met:
13  *
14  * - Redistributions of source code must retain the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer.
17  *
18  * - Redistributions in binary form must reproduce the above
19  * copyright notice, this list of conditions and the following
20  * disclaimer in the documentation and/or other materials
21  * provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37 
38 #include "rds.h"
39 
40 /*
41  * XXX
42  * - build with sparse
43  * - should we limit the size of a mr region? let transport return failure?
44  * - should we detect duplicate keys on a socket? hmm.
45  * - an rdma is an mlock, apply rlimit?
46  */
47 
48 /*
49  * get the number of pages by looking at the page indices that the start and
50  * end addresses fall in.
51  *
52  * Returns 0 if the vec is invalid. It is invalid if the number of bytes
53  * causes the address to wrap or overflows an unsigned int. This comes
54  * from being stored in the 'length' member of 'struct scatterlist'.
55  */
56 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
57 {
58  if ((vec->addr + vec->bytes <= vec->addr) ||
59  (vec->bytes > (u64)UINT_MAX))
60  return 0;
61 
62  return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
63  (vec->addr >> PAGE_SHIFT);
64 }
65 
66 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
67  struct rds_mr *insert)
68 {
69  struct rb_node **p = &root->rb_node;
70  struct rb_node *parent = NULL;
71  struct rds_mr *mr;
72 
73  while (*p) {
74  parent = *p;
75  mr = rb_entry(parent, struct rds_mr, r_rb_node);
76 
77  if (key < mr->r_key)
78  p = &(*p)->rb_left;
79  else if (key > mr->r_key)
80  p = &(*p)->rb_right;
81  else
82  return mr;
83  }
84 
85  if (insert) {
86  rb_link_node(&insert->r_rb_node, parent, p);
87  rb_insert_color(&insert->r_rb_node, root);
88  atomic_inc(&insert->r_refcount);
89  }
90  return NULL;
91 }
92 
93 /*
94  * Destroy the transport-specific part of a MR.
95  */
96 static void rds_destroy_mr(struct rds_mr *mr)
97 {
98  struct rds_sock *rs = mr->r_sock;
99  void *trans_private = NULL;
100  unsigned long flags;
101 
102  rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
103  mr->r_key, atomic_read(&mr->r_refcount));
104 
106  return;
107 
108  spin_lock_irqsave(&rs->rs_rdma_lock, flags);
109  if (!RB_EMPTY_NODE(&mr->r_rb_node))
110  rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
111  trans_private = mr->r_trans_private;
112  mr->r_trans_private = NULL;
113  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
114 
115  if (trans_private)
116  mr->r_trans->free_mr(trans_private, mr->r_invalidate);
117 }
118 
119 void __rds_put_mr_final(struct rds_mr *mr)
120 {
121  rds_destroy_mr(mr);
122  kfree(mr);
123 }
124 
125 /*
126  * By the time this is called we can't have any more ioctls called on
127  * the socket so we don't need to worry about racing with others.
128  */
129 void rds_rdma_drop_keys(struct rds_sock *rs)
130 {
131  struct rds_mr *mr;
132  struct rb_node *node;
133  unsigned long flags;
134 
135  /* Release any MRs associated with this socket */
136  spin_lock_irqsave(&rs->rs_rdma_lock, flags);
137  while ((node = rb_first(&rs->rs_rdma_keys))) {
138  mr = container_of(node, struct rds_mr, r_rb_node);
139  if (mr->r_trans == rs->rs_transport)
140  mr->r_invalidate = 0;
141  rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
142  RB_CLEAR_NODE(&mr->r_rb_node);
143  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
144  rds_destroy_mr(mr);
145  rds_mr_put(mr);
146  spin_lock_irqsave(&rs->rs_rdma_lock, flags);
147  }
148  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
149 
150  if (rs->rs_transport && rs->rs_transport->flush_mrs)
151  rs->rs_transport->flush_mrs();
152 }
153 
154 /*
155  * Helper function to pin user pages.
156  */
157 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
158  struct page **pages, int write)
159 {
160  int ret;
161 
162  ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
163 
164  if (ret >= 0 && ret < nr_pages) {
165  while (ret--)
166  put_page(pages[ret]);
167  ret = -EFAULT;
168  }
169 
170  return ret;
171 }
172 
173 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
174  u64 *cookie_ret, struct rds_mr **mr_ret)
175 {
176  struct rds_mr *mr = NULL, *found;
177  unsigned int nr_pages;
178  struct page **pages = NULL;
179  struct scatterlist *sg;
180  void *trans_private;
181  unsigned long flags;
183  unsigned int nents;
184  long i;
185  int ret;
186 
187  if (rs->rs_bound_addr == 0) {
188  ret = -ENOTCONN; /* XXX not a great errno */
189  goto out;
190  }
191 
192  if (!rs->rs_transport->get_mr) {
193  ret = -EOPNOTSUPP;
194  goto out;
195  }
196 
197  nr_pages = rds_pages_in_vec(&args->vec);
198  if (nr_pages == 0) {
199  ret = -EINVAL;
200  goto out;
201  }
202 
203  rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
204  args->vec.addr, args->vec.bytes, nr_pages);
205 
206  /* XXX clamp nr_pages to limit the size of this alloc? */
207  pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
208  if (!pages) {
209  ret = -ENOMEM;
210  goto out;
211  }
212 
213  mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
214  if (!mr) {
215  ret = -ENOMEM;
216  goto out;
217  }
218 
219  atomic_set(&mr->r_refcount, 1);
220  RB_CLEAR_NODE(&mr->r_rb_node);
221  mr->r_trans = rs->rs_transport;
222  mr->r_sock = rs;
223 
224  if (args->flags & RDS_RDMA_USE_ONCE)
225  mr->r_use_once = 1;
226  if (args->flags & RDS_RDMA_INVALIDATE)
227  mr->r_invalidate = 1;
228  if (args->flags & RDS_RDMA_READWRITE)
229  mr->r_write = 1;
230 
231  /*
232  * Pin the pages that make up the user buffer and transfer the page
233  * pointers to the mr's sg array. We check to see if we've mapped
234  * the whole region after transferring the partial page references
235  * to the sg array so that we can have one page ref cleanup path.
236  *
237  * For now we have no flag that tells us whether the mapping is
238  * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
239  * the zero page.
240  */
241  ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
242  if (ret < 0)
243  goto out;
244 
245  nents = ret;
246  sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
247  if (!sg) {
248  ret = -ENOMEM;
249  goto out;
250  }
251  WARN_ON(!nents);
252  sg_init_table(sg, nents);
253 
254  /* Stick all pages into the scatterlist */
255  for (i = 0 ; i < nents; i++)
256  sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
257 
258  rdsdebug("RDS: trans_private nents is %u\n", nents);
259 
260  /* Obtain a transport specific MR. If this succeeds, the
261  * s/g list is now owned by the MR.
262  * Note that dma_map() implies that pending writes are
263  * flushed to RAM, so no dma_sync is needed here. */
264  trans_private = rs->rs_transport->get_mr(sg, nents, rs,
265  &mr->r_key);
266 
267  if (IS_ERR(trans_private)) {
268  for (i = 0 ; i < nents; i++)
269  put_page(sg_page(&sg[i]));
270  kfree(sg);
271  ret = PTR_ERR(trans_private);
272  goto out;
273  }
274 
275  mr->r_trans_private = trans_private;
276 
277  rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
278  mr->r_key, (void *)(unsigned long) args->cookie_addr);
279 
280  /* The user may pass us an unaligned address, but we can only
281  * map page aligned regions. So we keep the offset, and build
282  * a 64bit cookie containing <R_Key, offset> and pass that
283  * around. */
284  cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
285  if (cookie_ret)
286  *cookie_ret = cookie;
287 
288  if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
289  ret = -EFAULT;
290  goto out;
291  }
292 
293  /* Inserting the new MR into the rbtree bumps its
294  * reference count. */
295  spin_lock_irqsave(&rs->rs_rdma_lock, flags);
296  found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
297  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
298 
299  BUG_ON(found && found != mr);
300 
301  rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
302  if (mr_ret) {
303  atomic_inc(&mr->r_refcount);
304  *mr_ret = mr;
305  }
306 
307  ret = 0;
308 out:
309  kfree(pages);
310  if (mr)
311  rds_mr_put(mr);
312  return ret;
313 }
314 
315 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
316 {
317  struct rds_get_mr_args args;
318 
319  if (optlen != sizeof(struct rds_get_mr_args))
320  return -EINVAL;
321 
322  if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
323  sizeof(struct rds_get_mr_args)))
324  return -EFAULT;
325 
326  return __rds_rdma_map(rs, &args, NULL, NULL);
327 }
328 
329 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
330 {
331  struct rds_get_mr_for_dest_args args;
332  struct rds_get_mr_args new_args;
333 
334  if (optlen != sizeof(struct rds_get_mr_for_dest_args))
335  return -EINVAL;
336 
337  if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
338  sizeof(struct rds_get_mr_for_dest_args)))
339  return -EFAULT;
340 
341  /*
342  * Initially, just behave like get_mr().
343  * TODO: Implement get_mr as wrapper around this
344  * and deprecate it.
345  */
346  new_args.vec = args.vec;
347  new_args.cookie_addr = args.cookie_addr;
348  new_args.flags = args.flags;
349 
350  return __rds_rdma_map(rs, &new_args, NULL, NULL);
351 }
352 
353 /*
354  * Free the MR indicated by the given R_Key
355  */
356 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
357 {
358  struct rds_free_mr_args args;
359  struct rds_mr *mr;
360  unsigned long flags;
361 
362  if (optlen != sizeof(struct rds_free_mr_args))
363  return -EINVAL;
364 
365  if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
366  sizeof(struct rds_free_mr_args)))
367  return -EFAULT;
368 
369  /* Special case - a null cookie means flush all unused MRs */
370  if (args.cookie == 0) {
371  if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
372  return -EINVAL;
373  rs->rs_transport->flush_mrs();
374  return 0;
375  }
376 
377  /* Look up the MR given its R_key and remove it from the rbtree
378  * so nobody else finds it.
379  * This should also prevent races with rds_rdma_unuse.
380  */
381  spin_lock_irqsave(&rs->rs_rdma_lock, flags);
382  mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
383  if (mr) {
384  rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
385  RB_CLEAR_NODE(&mr->r_rb_node);
386  if (args.flags & RDS_RDMA_INVALIDATE)
387  mr->r_invalidate = 1;
388  }
389  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
390 
391  if (!mr)
392  return -EINVAL;
393 
394  /*
395  * call rds_destroy_mr() ourselves so that we're sure it's done by the time
396  * we return. If we let rds_mr_put() do it it might not happen until
397  * someone else drops their ref.
398  */
399  rds_destroy_mr(mr);
400  rds_mr_put(mr);
401  return 0;
402 }
403 
404 /*
405  * This is called when we receive an extension header that
406  * tells us this MR was used. It allows us to implement
407  * use_once semantics
408  */
409 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
410 {
411  struct rds_mr *mr;
412  unsigned long flags;
413  int zot_me = 0;
414 
415  spin_lock_irqsave(&rs->rs_rdma_lock, flags);
416  mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
417  if (!mr) {
418  printk(KERN_ERR "rds: trying to unuse MR with unknown r_key %u!\n", r_key);
419  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
420  return;
421  }
422 
423  if (mr->r_use_once || force) {
424  rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
425  RB_CLEAR_NODE(&mr->r_rb_node);
426  zot_me = 1;
427  }
428  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
429 
430  /* May have to issue a dma_sync on this memory region.
431  * Note we could avoid this if the operation was a RDMA READ,
432  * but at this point we can't tell. */
433  if (mr->r_trans->sync_mr)
434  mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
435 
436  /* If the MR was marked as invalidate, this will
437  * trigger an async flush. */
438  if (zot_me)
439  rds_destroy_mr(mr);
440  rds_mr_put(mr);
441 }
442 
443 void rds_rdma_free_op(struct rm_rdma_op *ro)
444 {
445  unsigned int i;
446 
447  for (i = 0; i < ro->op_nents; i++) {
448  struct page *page = sg_page(&ro->op_sg[i]);
449 
450  /* Mark page dirty if it was possibly modified, which
451  * is the case for a RDMA_READ which copies from remote
452  * to local memory */
453  if (!ro->op_write) {
455  set_page_dirty(page);
456  }
457  put_page(page);
458  }
459 
460  kfree(ro->op_notifier);
461  ro->op_notifier = NULL;
462  ro->op_active = 0;
463 }
464 
465 void rds_atomic_free_op(struct rm_atomic_op *ao)
466 {
467  struct page *page = sg_page(ao->op_sg);
468 
469  /* Mark page dirty if it was possibly modified, which
470  * is the case for a RDMA_READ which copies from remote
471  * to local memory */
472  set_page_dirty(page);
473  put_page(page);
474 
475  kfree(ao->op_notifier);
476  ao->op_notifier = NULL;
477  ao->op_active = 0;
478 }
479 
480 
481 /*
482  * Count the number of pages needed to describe an incoming iovec array.
483  */
484 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
485 {
486  int tot_pages = 0;
487  unsigned int nr_pages;
488  unsigned int i;
489 
490  /* figure out the number of pages in the vector */
491  for (i = 0; i < nr_iovecs; i++) {
492  nr_pages = rds_pages_in_vec(&iov[i]);
493  if (nr_pages == 0)
494  return -EINVAL;
495 
496  tot_pages += nr_pages;
497 
498  /*
499  * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
500  * so tot_pages cannot overflow without first going negative.
501  */
502  if (tot_pages < 0)
503  return -EINVAL;
504  }
505 
506  return tot_pages;
507 }
508 
510 {
511  struct rds_iovec vec;
512  struct rds_iovec __user *local_vec;
513  int tot_pages = 0;
514  unsigned int nr_pages;
515  unsigned int i;
516 
517  local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
518 
519  /* figure out the number of pages in the vector */
520  for (i = 0; i < args->nr_local; i++) {
521  if (copy_from_user(&vec, &local_vec[i],
522  sizeof(struct rds_iovec)))
523  return -EFAULT;
524 
525  nr_pages = rds_pages_in_vec(&vec);
526  if (nr_pages == 0)
527  return -EINVAL;
528 
529  tot_pages += nr_pages;
530 
531  /*
532  * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
533  * so tot_pages cannot overflow without first going negative.
534  */
535  if (tot_pages < 0)
536  return -EINVAL;
537  }
538 
539  return tot_pages * sizeof(struct scatterlist);
540 }
541 
542 /*
543  * The application asks for a RDMA transfer.
544  * Extract all arguments and set up the rdma_op
545  */
546 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
547  struct cmsghdr *cmsg)
548 {
549  struct rds_rdma_args *args;
550  struct rm_rdma_op *op = &rm->rdma;
551  int nr_pages;
552  unsigned int nr_bytes;
553  struct page **pages = NULL;
554  struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
555  int iov_size;
556  unsigned int i, j;
557  int ret = 0;
558 
559  if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
560  || rm->rdma.op_active)
561  return -EINVAL;
562 
563  args = CMSG_DATA(cmsg);
564 
565  if (rs->rs_bound_addr == 0) {
566  ret = -ENOTCONN; /* XXX not a great errno */
567  goto out;
568  }
569 
570  if (args->nr_local > UIO_MAXIOV) {
571  ret = -EMSGSIZE;
572  goto out;
573  }
574 
575  /* Check whether to allocate the iovec area */
576  iov_size = args->nr_local * sizeof(struct rds_iovec);
577  if (args->nr_local > UIO_FASTIOV) {
578  iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
579  if (!iovs) {
580  ret = -ENOMEM;
581  goto out;
582  }
583  }
584 
585  if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
586  ret = -EFAULT;
587  goto out;
588  }
589 
590  nr_pages = rds_rdma_pages(iovs, args->nr_local);
591  if (nr_pages < 0) {
592  ret = -EINVAL;
593  goto out;
594  }
595 
596  pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
597  if (!pages) {
598  ret = -ENOMEM;
599  goto out;
600  }
601 
602  op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
603  op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
604  op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
605  op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
606  op->op_active = 1;
607  op->op_recverr = rs->rs_recverr;
608  WARN_ON(!nr_pages);
609  op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
610  if (!op->op_sg) {
611  ret = -ENOMEM;
612  goto out;
613  }
614 
615  if (op->op_notify || op->op_recverr) {
616  /* We allocate an uninitialized notifier here, because
617  * we don't want to do that in the completion handler. We
618  * would have to use GFP_ATOMIC there, and don't want to deal
619  * with failed allocations.
620  */
621  op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
622  if (!op->op_notifier) {
623  ret = -ENOMEM;
624  goto out;
625  }
626  op->op_notifier->n_user_token = args->user_token;
627  op->op_notifier->n_status = RDS_RDMA_SUCCESS;
628  }
629 
630  /* The cookie contains the R_Key of the remote memory region, and
631  * optionally an offset into it. This is how we implement RDMA into
632  * unaligned memory.
633  * When setting up the RDMA, we need to add that offset to the
634  * destination address (which is really an offset into the MR)
635  * FIXME: We may want to move this into ib_rdma.c
636  */
637  op->op_rkey = rds_rdma_cookie_key(args->cookie);
638  op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
639 
640  nr_bytes = 0;
641 
642  rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
643  (unsigned long long)args->nr_local,
644  (unsigned long long)args->remote_vec.addr,
645  op->op_rkey);
646 
647  for (i = 0; i < args->nr_local; i++) {
648  struct rds_iovec *iov = &iovs[i];
649  /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
650  unsigned int nr = rds_pages_in_vec(iov);
651 
652  rs->rs_user_addr = iov->addr;
653  rs->rs_user_bytes = iov->bytes;
654 
655  /* If it's a WRITE operation, we want to pin the pages for reading.
656  * If it's a READ operation, we need to pin the pages for writing.
657  */
658  ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
659  if (ret < 0)
660  goto out;
661 
662  rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
663  nr_bytes, nr, iov->bytes, iov->addr);
664 
665  nr_bytes += iov->bytes;
666 
667  for (j = 0; j < nr; j++) {
668  unsigned int offset = iov->addr & ~PAGE_MASK;
669  struct scatterlist *sg;
670 
671  sg = &op->op_sg[op->op_nents + j];
672  sg_set_page(sg, pages[j],
673  min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
674  offset);
675 
676  rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
677  sg->offset, sg->length, iov->addr, iov->bytes);
678 
679  iov->addr += sg->length;
680  iov->bytes -= sg->length;
681  }
682 
683  op->op_nents += nr;
684  }
685 
686  if (nr_bytes > args->remote_vec.bytes) {
687  rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
688  nr_bytes,
689  (unsigned int) args->remote_vec.bytes);
690  ret = -EINVAL;
691  goto out;
692  }
693  op->op_bytes = nr_bytes;
694 
695 out:
696  if (iovs != iovstack)
697  sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
698  kfree(pages);
699  if (ret)
700  rds_rdma_free_op(op);
701  else
702  rds_stats_inc(s_send_rdma);
703 
704  return ret;
705 }
706 
707 /*
708  * The application wants us to pass an RDMA destination (aka MR)
709  * to the remote
710  */
711 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
712  struct cmsghdr *cmsg)
713 {
714  unsigned long flags;
715  struct rds_mr *mr;
716  u32 r_key;
717  int err = 0;
718 
719  if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
720  rm->m_rdma_cookie != 0)
721  return -EINVAL;
722 
723  memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
724 
725  /* We are reusing a previously mapped MR here. Most likely, the
726  * application has written to the buffer, so we need to explicitly
727  * flush those writes to RAM. Otherwise the HCA may not see them
728  * when doing a DMA from that buffer.
729  */
730  r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
731 
732  spin_lock_irqsave(&rs->rs_rdma_lock, flags);
733  mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
734  if (!mr)
735  err = -EINVAL; /* invalid r_key */
736  else
737  atomic_inc(&mr->r_refcount);
738  spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
739 
740  if (mr) {
741  mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
742  rm->rdma.op_rdma_mr = mr;
743  }
744  return err;
745 }
746 
747 /*
748  * The application passes us an address range it wants to enable RDMA
749  * to/from. We map the area, and save the <R_Key,offset> pair
750  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
751  * in an extension header.
752  */
753 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
754  struct cmsghdr *cmsg)
755 {
756  if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
757  rm->m_rdma_cookie != 0)
758  return -EINVAL;
759 
760  return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr);
761 }
762 
763 /*
764  * Fill in rds_message for an atomic request.
765  */
766 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
767  struct cmsghdr *cmsg)
768 {
769  struct page *page = NULL;
770  struct rds_atomic_args *args;
771  int ret = 0;
772 
773  if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
774  || rm->atomic.op_active)
775  return -EINVAL;
776 
777  args = CMSG_DATA(cmsg);
778 
779  /* Nonmasked & masked cmsg ops converted to masked hw ops */
780  switch (cmsg->cmsg_type) {
782  rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
783  rm->atomic.op_m_fadd.add = args->fadd.add;
784  rm->atomic.op_m_fadd.nocarry_mask = 0;
785  break;
787  rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
788  rm->atomic.op_m_fadd.add = args->m_fadd.add;
789  rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
790  break;
792  rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
793  rm->atomic.op_m_cswp.compare = args->cswp.compare;
794  rm->atomic.op_m_cswp.swap = args->cswp.swap;
795  rm->atomic.op_m_cswp.compare_mask = ~0;
796  rm->atomic.op_m_cswp.swap_mask = ~0;
797  break;
799  rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
800  rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
801  rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
802  rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
803  rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
804  break;
805  default:
806  BUG(); /* should never happen */
807  }
808 
809  rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
810  rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
811  rm->atomic.op_active = 1;
812  rm->atomic.op_recverr = rs->rs_recverr;
813  rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
814  if (!rm->atomic.op_sg) {
815  ret = -ENOMEM;
816  goto err;
817  }
818 
819  /* verify 8 byte-aligned */
820  if (args->local_addr & 0x7) {
821  ret = -EFAULT;
822  goto err;
823  }
824 
825  ret = rds_pin_pages(args->local_addr, 1, &page, 1);
826  if (ret != 1)
827  goto err;
828  ret = 0;
829 
830  sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
831 
832  if (rm->atomic.op_notify || rm->atomic.op_recverr) {
833  /* We allocate an uninitialized notifier here, because
834  * we don't want to do that in the completion handler. We
835  * would have to use GFP_ATOMIC there, and don't want to deal
836  * with failed allocations.
837  */
838  rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
839  if (!rm->atomic.op_notifier) {
840  ret = -ENOMEM;
841  goto err;
842  }
843 
844  rm->atomic.op_notifier->n_user_token = args->user_token;
845  rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
846  }
847 
848  rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
849  rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
850 
851  return ret;
852 err:
853  if (page)
854  put_page(page);
855  kfree(rm->atomic.op_notifier);
856 
857  return ret;
858 }