Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
red.h
Go to the documentation of this file.
1 #ifndef __NET_SCHED_RED_H
2 #define __NET_SCHED_RED_H
3 
4 #include <linux/types.h>
5 #include <linux/bug.h>
6 #include <net/pkt_sched.h>
7 #include <net/inet_ecn.h>
8 #include <net/dsfield.h>
9 #include <linux/reciprocal_div.h>
10 
11 /* Random Early Detection (RED) algorithm.
12  =======================================
13 
14  Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
15  for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
16 
17  This file codes a "divisionless" version of RED algorithm
18  as written down in Fig.17 of the paper.
19 
20  Short description.
21  ------------------
22 
23  When a new packet arrives we calculate the average queue length:
24 
25  avg = (1-W)*avg + W*current_queue_len,
26 
27  W is the filter time constant (chosen as 2^(-Wlog)), it controls
28  the inertia of the algorithm. To allow larger bursts, W should be
29  decreased.
30 
31  if (avg > th_max) -> packet marked (dropped).
32  if (avg < th_min) -> packet passes.
33  if (th_min < avg < th_max) we calculate probability:
34 
35  Pb = max_P * (avg - th_min)/(th_max-th_min)
36 
37  and mark (drop) packet with this probability.
38  Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
39  max_P should be small (not 1), usually 0.01..0.02 is good value.
40 
41  max_P is chosen as a number, so that max_P/(th_max-th_min)
42  is a negative power of two in order arithmetics to contain
43  only shifts.
44 
45 
46  Parameters, settable by user:
47  -----------------------------
48 
49  qth_min - bytes (should be < qth_max/2)
50  qth_max - bytes (should be at least 2*qth_min and less limit)
51  Wlog - bits (<32) log(1/W).
52  Plog - bits (<32)
53 
54  Plog is related to max_P by formula:
55 
56  max_P = (qth_max-qth_min)/2^Plog;
57 
58  F.e. if qth_max=128K and qth_min=32K, then Plog=22
59  corresponds to max_P=0.02
60 
61  Scell_log
62  Stab
63 
64  Lookup table for log((1-W)^(t/t_ave).
65 
66 
67  NOTES:
68 
69  Upper bound on W.
70  -----------------
71 
72  If you want to allow bursts of L packets of size S,
73  you should choose W:
74 
75  L + 1 - th_min/S < (1-(1-W)^L)/W
76 
77  th_min/S = 32 th_min/S = 4
78 
79  log(W) L
80  -1 33
81  -2 35
82  -3 39
83  -4 46
84  -5 57
85  -6 75
86  -7 101
87  -8 135
88  -9 190
89  etc.
90  */
91 
92 /*
93  * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
94  * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
95  *
96  * Every 500 ms:
97  * if (avg > target and max_p <= 0.5)
98  * increase max_p : max_p += alpha;
99  * else if (avg < target and max_p >= 0.01)
100  * decrease max_p : max_p *= beta;
101  *
102  * target :[qth_min + 0.4*(qth_min - qth_max),
103  * qth_min + 0.6*(qth_min - qth_max)].
104  * alpha : min(0.01, max_p / 4)
105  * beta : 0.9
106  * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
107  * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
108  */
109 #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
110 
111 #define MAX_P_MIN (1 * RED_ONE_PERCENT)
112 #define MAX_P_MAX (50 * RED_ONE_PERCENT)
113 #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
114 
115 #define RED_STAB_SIZE 256
116 #define RED_STAB_MASK (RED_STAB_SIZE - 1)
117 
118 struct red_stats {
119  u32 prob_drop; /* Early probability drops */
120  u32 prob_mark; /* Early probability marks */
121  u32 forced_drop; /* Forced drops, qavg > max_thresh */
122  u32 forced_mark; /* Forced marks, qavg > max_thresh */
123  u32 pdrop; /* Drops due to queue limits */
124  u32 other; /* Drops due to drop() calls */
125 };
126 
127 struct red_parms {
128  /* Parameters */
129  u32 qth_min; /* Min avg length threshold: Wlog scaled */
130  u32 qth_max; /* Max avg length threshold: Wlog scaled */
132  u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
133  u32 max_P_reciprocal; /* reciprocal_value(max_P / qth_delta) */
134  u32 qth_delta; /* max_th - min_th */
135  u32 target_min; /* min_th + 0.4*(max_th - min_th) */
136  u32 target_max; /* min_th + 0.6*(max_th - min_th) */
138  u8 Wlog; /* log(W) */
139  u8 Plog; /* random number bits */
141 };
142 
143 struct red_vars {
144  /* Variables */
145  int qcount; /* Number of packets since last random
146  number generation */
147  u32 qR; /* Cached random number */
148 
149  unsigned long qavg; /* Average queue length: Wlog scaled */
150  ktime_t qidlestart; /* Start of current idle period */
151 };
152 
153 static inline u32 red_maxp(u8 Plog)
154 {
155  return Plog < 32 ? (~0U >> Plog) : ~0U;
156 }
157 
158 static inline void red_set_vars(struct red_vars *v)
159 {
160  /* Reset average queue length, the value is strictly bound
161  * to the parameters below, reseting hurts a bit but leaving
162  * it might result in an unreasonable qavg for a while. --TGR
163  */
164  v->qavg = 0;
165 
166  v->qcount = -1;
167 }
168 
169 static inline void red_set_parms(struct red_parms *p,
170  u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
171  u8 Scell_log, u8 *stab, u32 max_P)
172 {
173  int delta = qth_max - qth_min;
174  u32 max_p_delta;
175 
176  p->qth_min = qth_min << Wlog;
177  p->qth_max = qth_max << Wlog;
178  p->Wlog = Wlog;
179  p->Plog = Plog;
180  if (delta < 0)
181  delta = 1;
182  p->qth_delta = delta;
183  if (!max_P) {
184  max_P = red_maxp(Plog);
185  max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
186  }
187  p->max_P = max_P;
188  max_p_delta = max_P / delta;
189  max_p_delta = max(max_p_delta, 1U);
190  p->max_P_reciprocal = reciprocal_value(max_p_delta);
191 
192  /* RED Adaptative target :
193  * [min_th + 0.4*(min_th - max_th),
194  * min_th + 0.6*(min_th - max_th)].
195  */
196  delta /= 5;
197  p->target_min = qth_min + 2*delta;
198  p->target_max = qth_min + 3*delta;
199 
200  p->Scell_log = Scell_log;
201  p->Scell_max = (255 << Scell_log);
202 
203  if (stab)
204  memcpy(p->Stab, stab, sizeof(p->Stab));
205 }
206 
207 static inline int red_is_idling(const struct red_vars *v)
208 {
209  return v->qidlestart.tv64 != 0;
210 }
211 
212 static inline void red_start_of_idle_period(struct red_vars *v)
213 {
214  v->qidlestart = ktime_get();
215 }
216 
217 static inline void red_end_of_idle_period(struct red_vars *v)
218 {
219  v->qidlestart.tv64 = 0;
220 }
221 
222 static inline void red_restart(struct red_vars *v)
223 {
224  red_end_of_idle_period(v);
225  v->qavg = 0;
226  v->qcount = -1;
227 }
228 
229 static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
230  const struct red_vars *v)
231 {
232  s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
233  long us_idle = min_t(s64, delta, p->Scell_max);
234  int shift;
235 
236  /*
237  * The problem: ideally, average length queue recalcultion should
238  * be done over constant clock intervals. This is too expensive, so
239  * that the calculation is driven by outgoing packets.
240  * When the queue is idle we have to model this clock by hand.
241  *
242  * SF+VJ proposed to "generate":
243  *
244  * m = idletime / (average_pkt_size / bandwidth)
245  *
246  * dummy packets as a burst after idle time, i.e.
247  *
248  * v->qavg *= (1-W)^m
249  *
250  * This is an apparently overcomplicated solution (f.e. we have to
251  * precompute a table to make this calculation in reasonable time)
252  * I believe that a simpler model may be used here,
253  * but it is field for experiments.
254  */
255 
256  shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
257 
258  if (shift)
259  return v->qavg >> shift;
260  else {
261  /* Approximate initial part of exponent with linear function:
262  *
263  * (1-W)^m ~= 1-mW + ...
264  *
265  * Seems, it is the best solution to
266  * problem of too coarse exponent tabulation.
267  */
268  us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
269 
270  if (us_idle < (v->qavg >> 1))
271  return v->qavg - us_idle;
272  else
273  return v->qavg >> 1;
274  }
275 }
276 
277 static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
278  const struct red_vars *v,
279  unsigned int backlog)
280 {
281  /*
282  * NOTE: v->qavg is fixed point number with point at Wlog.
283  * The formula below is equvalent to floating point
284  * version:
285  *
286  * qavg = qavg*(1-W) + backlog*W;
287  *
288  * --ANK (980924)
289  */
290  return v->qavg + (backlog - (v->qavg >> p->Wlog));
291 }
292 
293 static inline unsigned long red_calc_qavg(const struct red_parms *p,
294  const struct red_vars *v,
295  unsigned int backlog)
296 {
297  if (!red_is_idling(v))
298  return red_calc_qavg_no_idle_time(p, v, backlog);
299  else
300  return red_calc_qavg_from_idle_time(p, v);
301 }
302 
303 
304 static inline u32 red_random(const struct red_parms *p)
305 {
306  return reciprocal_divide(net_random(), p->max_P_reciprocal);
307 }
308 
309 static inline int red_mark_probability(const struct red_parms *p,
310  const struct red_vars *v,
311  unsigned long qavg)
312 {
313  /* The formula used below causes questions.
314 
315  OK. qR is random number in the interval
316  (0..1/max_P)*(qth_max-qth_min)
317  i.e. 0..(2^Plog). If we used floating point
318  arithmetics, it would be: (2^Plog)*rnd_num,
319  where rnd_num is less 1.
320 
321  Taking into account, that qavg have fixed
322  point at Wlog, two lines
323  below have the following floating point equivalent:
324 
325  max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
326 
327  Any questions? --ANK (980924)
328  */
329  return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
330 }
331 
332 enum {
336 };
337 
338 static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
339 {
340  if (qavg < p->qth_min)
341  return RED_BELOW_MIN_THRESH;
342  else if (qavg >= p->qth_max)
343  return RED_ABOVE_MAX_TRESH;
344  else
345  return RED_BETWEEN_TRESH;
346 }
347 
348 enum {
352 };
353 
354 static inline int red_action(const struct red_parms *p,
355  struct red_vars *v,
356  unsigned long qavg)
357 {
358  switch (red_cmp_thresh(p, qavg)) {
360  v->qcount = -1;
361  return RED_DONT_MARK;
362 
363  case RED_BETWEEN_TRESH:
364  if (++v->qcount) {
365  if (red_mark_probability(p, v, qavg)) {
366  v->qcount = 0;
367  v->qR = red_random(p);
368  return RED_PROB_MARK;
369  }
370  } else
371  v->qR = red_random(p);
372 
373  return RED_DONT_MARK;
374 
375  case RED_ABOVE_MAX_TRESH:
376  v->qcount = -1;
377  return RED_HARD_MARK;
378  }
379 
380  BUG();
381  return RED_DONT_MARK;
382 }
383 
384 static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
385 {
386  unsigned long qavg;
387  u32 max_p_delta;
388 
389  qavg = v->qavg;
390  if (red_is_idling(v))
391  qavg = red_calc_qavg_from_idle_time(p, v);
392 
393  /* v->qavg is fixed point number with point at Wlog */
394  qavg >>= p->Wlog;
395 
396  if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
397  p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
398  else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
399  p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
400 
401  max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
402  max_p_delta = max(max_p_delta, 1U);
403  p->max_P_reciprocal = reciprocal_value(max_p_delta);
404 }
405 #endif