Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rpc_rdma.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses. You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  *
17  * Redistributions in binary form must reproduce the above
18  * copyright notice, this list of conditions and the following
19  * disclaimer in the documentation and/or other materials provided
20  * with the distribution.
21  *
22  * Neither the name of the Network Appliance, Inc. nor the names of
23  * its contributors may be used to endorse or promote products
24  * derived from this software without specific prior written
25  * permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #ifdef RPC_DEBUG
53 # define RPCDBG_FACILITY RPCDBG_TRANS
54 #endif
55 
62 };
63 
64 #ifdef RPC_DEBUG
65 static const char transfertypes[][12] = {
66  "pure inline", /* no chunks */
67  " read chunk", /* some argument via rdma read */
68  "*read chunk", /* entire request via rdma read */
69  "write chunk", /* some result via rdma write */
70  "reply chunk" /* entire reply via rdma write */
71 };
72 #endif
73 
74 /*
75  * Chunk assembly from upper layer xdr_buf.
76  *
77  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78  * elements. Segments are then coalesced when registered, if possible
79  * within the selected memreg mode.
80  *
81  * Note, this routine is never called if the connection's memory
82  * registration strategy is 0 (bounce buffers).
83  */
84 
85 static int
86 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
87  enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
88 {
89  int len, n = 0, p;
90  int page_base;
91  struct page **ppages;
92 
93  if (pos == 0 && xdrbuf->head[0].iov_len) {
94  seg[n].mr_page = NULL;
95  seg[n].mr_offset = xdrbuf->head[0].iov_base;
96  seg[n].mr_len = xdrbuf->head[0].iov_len;
97  ++n;
98  }
99 
100  len = xdrbuf->page_len;
101  ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
102  page_base = xdrbuf->page_base & ~PAGE_MASK;
103  p = 0;
104  while (len && n < nsegs) {
105  seg[n].mr_page = ppages[p];
106  seg[n].mr_offset = (void *)(unsigned long) page_base;
107  seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
108  BUG_ON(seg[n].mr_len > PAGE_SIZE);
109  len -= seg[n].mr_len;
110  ++n;
111  ++p;
112  page_base = 0; /* page offset only applies to first page */
113  }
114 
115  /* Message overflows the seg array */
116  if (len && n == nsegs)
117  return 0;
118 
119  if (xdrbuf->tail[0].iov_len) {
120  /* the rpcrdma protocol allows us to omit any trailing
121  * xdr pad bytes, saving the server an RDMA operation. */
122  if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
123  return n;
124  if (n == nsegs)
125  /* Tail remains, but we're out of segments */
126  return 0;
127  seg[n].mr_page = NULL;
128  seg[n].mr_offset = xdrbuf->tail[0].iov_base;
129  seg[n].mr_len = xdrbuf->tail[0].iov_len;
130  ++n;
131  }
132 
133  return n;
134 }
135 
136 /*
137  * Create read/write chunk lists, and reply chunks, for RDMA
138  *
139  * Assume check against THRESHOLD has been done, and chunks are required.
140  * Assume only encoding one list entry for read|write chunks. The NFSv3
141  * protocol is simple enough to allow this as it only has a single "bulk
142  * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
143  * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
144  *
145  * When used for a single reply chunk (which is a special write
146  * chunk used for the entire reply, rather than just the data), it
147  * is used primarily for READDIR and READLINK which would otherwise
148  * be severely size-limited by a small rdma inline read max. The server
149  * response will come back as an RDMA Write, followed by a message
150  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
151  * chunks do not provide data alignment, however they do not require
152  * "fixup" (moving the response to the upper layer buffer) either.
153  *
154  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
155  *
156  * Read chunklist (a linked list):
157  * N elements, position P (same P for all chunks of same arg!):
158  * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
159  *
160  * Write chunklist (a list of (one) counted array):
161  * N elements:
162  * 1 - N - HLOO - HLOO - ... - HLOO - 0
163  *
164  * Reply chunk (a counted array):
165  * N elements:
166  * 1 - N - HLOO - HLOO - ... - HLOO
167  */
168 
169 static unsigned int
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171  struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172 {
173  struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
175  int nsegs, nchunks = 0;
176  unsigned int pos;
177  struct rpcrdma_mr_seg *seg = req->rl_segments;
178  struct rpcrdma_read_chunk *cur_rchunk = NULL;
179  struct rpcrdma_write_array *warray = NULL;
180  struct rpcrdma_write_chunk *cur_wchunk = NULL;
181  __be32 *iptr = headerp->rm_body.rm_chunks;
182 
183  if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184  /* a read chunk - server will RDMA Read our memory */
185  cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186  } else {
187  /* a write or reply chunk - server will RDMA Write our memory */
188  *iptr++ = xdr_zero; /* encode a NULL read chunk list */
189  if (type == rpcrdma_replych)
190  *iptr++ = xdr_zero; /* a NULL write chunk list */
191  warray = (struct rpcrdma_write_array *) iptr;
192  cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193  }
194 
195  if (type == rpcrdma_replych || type == rpcrdma_areadch)
196  pos = 0;
197  else
198  pos = target->head[0].iov_len;
199 
200  nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201  if (nsegs == 0)
202  return 0;
203 
204  do {
205  /* bind/register the memory, then build chunk from result. */
206  int n = rpcrdma_register_external(seg, nsegs,
207  cur_wchunk != NULL, r_xprt);
208  if (n <= 0)
209  goto out;
210  if (cur_rchunk) { /* read */
211  cur_rchunk->rc_discrim = xdr_one;
212  /* all read chunks have the same "position" */
213  cur_rchunk->rc_position = htonl(pos);
214  cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
215  cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
216  xdr_encode_hyper(
217  (__be32 *)&cur_rchunk->rc_target.rs_offset,
218  seg->mr_base);
219  dprintk("RPC: %s: read chunk "
220  "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
221  seg->mr_len, (unsigned long long)seg->mr_base,
222  seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223  cur_rchunk++;
224  r_xprt->rx_stats.read_chunk_count++;
225  } else { /* write/reply */
226  cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
227  cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
228  xdr_encode_hyper(
229  (__be32 *)&cur_wchunk->wc_target.rs_offset,
230  seg->mr_base);
231  dprintk("RPC: %s: %s chunk "
232  "elem %d@0x%llx:0x%x (%s)\n", __func__,
233  (type == rpcrdma_replych) ? "reply" : "write",
234  seg->mr_len, (unsigned long long)seg->mr_base,
235  seg->mr_rkey, n < nsegs ? "more" : "last");
236  cur_wchunk++;
237  if (type == rpcrdma_replych)
238  r_xprt->rx_stats.reply_chunk_count++;
239  else
240  r_xprt->rx_stats.write_chunk_count++;
241  r_xprt->rx_stats.total_rdma_request += seg->mr_len;
242  }
243  nchunks++;
244  seg += n;
245  nsegs -= n;
246  } while (nsegs);
247 
248  /* success. all failures return above */
249  req->rl_nchunks = nchunks;
250 
251  BUG_ON(nchunks == 0);
252  BUG_ON((r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR)
253  && (nchunks > 3));
254 
255  /*
256  * finish off header. If write, marshal discrim and nchunks.
257  */
258  if (cur_rchunk) {
259  iptr = (__be32 *) cur_rchunk;
260  *iptr++ = xdr_zero; /* finish the read chunk list */
261  *iptr++ = xdr_zero; /* encode a NULL write chunk list */
262  *iptr++ = xdr_zero; /* encode a NULL reply chunk */
263  } else {
264  warray->wc_discrim = xdr_one;
265  warray->wc_nchunks = htonl(nchunks);
266  iptr = (__be32 *) cur_wchunk;
267  if (type == rpcrdma_writech) {
268  *iptr++ = xdr_zero; /* finish the write chunk list */
269  *iptr++ = xdr_zero; /* encode a NULL reply chunk */
270  }
271  }
272 
273  /*
274  * Return header size.
275  */
276  return (unsigned char *)iptr - (unsigned char *)headerp;
277 
278 out:
279  for (pos = 0; nchunks--;)
281  &req->rl_segments[pos], r_xprt, NULL);
282  return 0;
283 }
284 
285 /*
286  * Copy write data inline.
287  * This function is used for "small" requests. Data which is passed
288  * to RPC via iovecs (or page list) is copied directly into the
289  * pre-registered memory buffer for this request. For small amounts
290  * of data, this is efficient. The cutoff value is tunable.
291  */
292 static int
293 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
294 {
295  int i, npages, curlen;
296  int copy_len;
297  unsigned char *srcp, *destp;
298  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
299  int page_base;
300  struct page **ppages;
301 
302  destp = rqst->rq_svec[0].iov_base;
303  curlen = rqst->rq_svec[0].iov_len;
304  destp += curlen;
305  /*
306  * Do optional padding where it makes sense. Alignment of write
307  * payload can help the server, if our setting is accurate.
308  */
309  pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
310  if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
311  pad = 0; /* don't pad this request */
312 
313  dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
314  __func__, pad, destp, rqst->rq_slen, curlen);
315 
316  copy_len = rqst->rq_snd_buf.page_len;
317 
318  if (rqst->rq_snd_buf.tail[0].iov_len) {
319  curlen = rqst->rq_snd_buf.tail[0].iov_len;
320  if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
321  memmove(destp + copy_len,
322  rqst->rq_snd_buf.tail[0].iov_base, curlen);
323  r_xprt->rx_stats.pullup_copy_count += curlen;
324  }
325  dprintk("RPC: %s: tail destp 0x%p len %d\n",
326  __func__, destp + copy_len, curlen);
327  rqst->rq_svec[0].iov_len += curlen;
328  }
329  r_xprt->rx_stats.pullup_copy_count += copy_len;
330 
331  page_base = rqst->rq_snd_buf.page_base;
332  ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
333  page_base &= ~PAGE_MASK;
334  npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
335  for (i = 0; copy_len && i < npages; i++) {
336  curlen = PAGE_SIZE - page_base;
337  if (curlen > copy_len)
338  curlen = copy_len;
339  dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
340  __func__, i, destp, copy_len, curlen);
341  srcp = kmap_atomic(ppages[i]);
342  memcpy(destp, srcp+page_base, curlen);
343  kunmap_atomic(srcp);
344  rqst->rq_svec[0].iov_len += curlen;
345  destp += curlen;
346  copy_len -= curlen;
347  page_base = 0;
348  }
349  /* header now contains entire send message */
350  return pad;
351 }
352 
353 /*
354  * Marshal a request: the primary job of this routine is to choose
355  * the transfer modes. See comments below.
356  *
357  * Uses multiple RDMA IOVs for a request:
358  * [0] -- RPC RDMA header, which uses memory from the *start* of the
359  * preregistered buffer that already holds the RPC data in
360  * its middle.
361  * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
362  * [2] -- optional padding.
363  * [3] -- if padded, header only in [1] and data here.
364  */
365 
366 int
367 rpcrdma_marshal_req(struct rpc_rqst *rqst)
368 {
369  struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
370  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
371  struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
372  char *base;
373  size_t hdrlen, rpclen, padlen;
374  enum rpcrdma_chunktype rtype, wtype;
375  struct rpcrdma_msg *headerp;
376 
377  /*
378  * rpclen gets amount of data in first buffer, which is the
379  * pre-registered buffer.
380  */
381  base = rqst->rq_svec[0].iov_base;
382  rpclen = rqst->rq_svec[0].iov_len;
383 
384  /* build RDMA header in private area at front */
385  headerp = (struct rpcrdma_msg *) req->rl_base;
386  /* don't htonl XID, it's already done in request */
387  headerp->rm_xid = rqst->rq_xid;
388  headerp->rm_vers = xdr_one;
389  headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
390  headerp->rm_type = htonl(RDMA_MSG);
391 
392  /*
393  * Chunks needed for results?
394  *
395  * o If the expected result is under the inline threshold, all ops
396  * return as inline (but see later).
397  * o Large non-read ops return as a single reply chunk.
398  * o Large read ops return data as write chunk(s), header as inline.
399  *
400  * Note: the NFS code sending down multiple result segments implies
401  * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
402  */
403 
404  /*
405  * This code can handle read chunks, write chunks OR reply
406  * chunks -- only one type. If the request is too big to fit
407  * inline, then we will choose read chunks. If the request is
408  * a READ, then use write chunks to separate the file data
409  * into pages; otherwise use reply chunks.
410  */
411  if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
412  wtype = rpcrdma_noch;
413  else if (rqst->rq_rcv_buf.page_len == 0)
414  wtype = rpcrdma_replych;
415  else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
416  wtype = rpcrdma_writech;
417  else
418  wtype = rpcrdma_replych;
419 
420  /*
421  * Chunks needed for arguments?
422  *
423  * o If the total request is under the inline threshold, all ops
424  * are sent as inline.
425  * o Large non-write ops are sent with the entire message as a
426  * single read chunk (protocol 0-position special case).
427  * o Large write ops transmit data as read chunk(s), header as
428  * inline.
429  *
430  * Note: the NFS code sending down multiple argument segments
431  * implies the op is a write.
432  * TBD check NFSv4 setacl
433  */
434  if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
435  rtype = rpcrdma_noch;
436  else if (rqst->rq_snd_buf.page_len == 0)
437  rtype = rpcrdma_areadch;
438  else
439  rtype = rpcrdma_readch;
440 
441  /* The following simplification is not true forever */
442  if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
443  wtype = rpcrdma_noch;
444  BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
445 
446  if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
447  (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
448  /* forced to "pure inline"? */
449  dprintk("RPC: %s: too much data (%d/%d) for inline\n",
450  __func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
451  return -1;
452  }
453 
454  hdrlen = 28; /*sizeof *headerp;*/
455  padlen = 0;
456 
457  /*
458  * Pull up any extra send data into the preregistered buffer.
459  * When padding is in use and applies to the transfer, insert
460  * it and change the message type.
461  */
462  if (rtype == rpcrdma_noch) {
463 
464  padlen = rpcrdma_inline_pullup(rqst,
466 
467  if (padlen) {
468  headerp->rm_type = htonl(RDMA_MSGP);
469  headerp->rm_body.rm_padded.rm_align =
471  headerp->rm_body.rm_padded.rm_thresh =
473  headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
474  headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
475  headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
476  hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
477  BUG_ON(wtype != rpcrdma_noch);
478 
479  } else {
480  headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
481  headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
482  headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
483  /* new length after pullup */
484  rpclen = rqst->rq_svec[0].iov_len;
485  /*
486  * Currently we try to not actually use read inline.
487  * Reply chunks have the desirable property that
488  * they land, packed, directly in the target buffers
489  * without headers, so they require no fixup. The
490  * additional RDMA Write op sends the same amount
491  * of data, streams on-the-wire and adds no overhead
492  * on receive. Therefore, we request a reply chunk
493  * for non-writes wherever feasible and efficient.
494  */
495  if (wtype == rpcrdma_noch &&
496  r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
497  wtype = rpcrdma_replych;
498  }
499  }
500 
501  /*
502  * Marshal chunks. This routine will return the header length
503  * consumed by marshaling.
504  */
505  if (rtype != rpcrdma_noch) {
506  hdrlen = rpcrdma_create_chunks(rqst,
507  &rqst->rq_snd_buf, headerp, rtype);
508  wtype = rtype; /* simplify dprintk */
509 
510  } else if (wtype != rpcrdma_noch) {
511  hdrlen = rpcrdma_create_chunks(rqst,
512  &rqst->rq_rcv_buf, headerp, wtype);
513  }
514 
515  if (hdrlen == 0)
516  return -1;
517 
518  dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd"
519  " headerp 0x%p base 0x%p lkey 0x%x\n",
520  __func__, transfertypes[wtype], hdrlen, rpclen, padlen,
521  headerp, base, req->rl_iov.lkey);
522 
523  /*
524  * initialize send_iov's - normally only two: rdma chunk header and
525  * single preregistered RPC header buffer, but if padding is present,
526  * then use a preregistered (and zeroed) pad buffer between the RPC
527  * header and any write data. In all non-rdma cases, any following
528  * data has been copied into the RPC header buffer.
529  */
530  req->rl_send_iov[0].addr = req->rl_iov.addr;
531  req->rl_send_iov[0].length = hdrlen;
532  req->rl_send_iov[0].lkey = req->rl_iov.lkey;
533 
534  req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
535  req->rl_send_iov[1].length = rpclen;
536  req->rl_send_iov[1].lkey = req->rl_iov.lkey;
537 
538  req->rl_niovs = 2;
539 
540  if (padlen) {
541  struct rpcrdma_ep *ep = &r_xprt->rx_ep;
542 
543  req->rl_send_iov[2].addr = ep->rep_pad.addr;
544  req->rl_send_iov[2].length = padlen;
545  req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
546 
547  req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
548  req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
549  req->rl_send_iov[3].lkey = req->rl_iov.lkey;
550 
551  req->rl_niovs = 4;
552  }
553 
554  return 0;
555 }
556 
557 /*
558  * Chase down a received write or reply chunklist to get length
559  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
560  */
561 static int
562 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
563 {
564  unsigned int i, total_len;
565  struct rpcrdma_write_chunk *cur_wchunk;
566 
567  i = ntohl(**iptrp); /* get array count */
568  if (i > max)
569  return -1;
570  cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
571  total_len = 0;
572  while (i--) {
573  struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
574  ifdebug(FACILITY) {
575  u64 off;
576  xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
577  dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
578  __func__,
579  ntohl(seg->rs_length),
580  (unsigned long long)off,
581  ntohl(seg->rs_handle));
582  }
583  total_len += ntohl(seg->rs_length);
584  ++cur_wchunk;
585  }
586  /* check and adjust for properly terminated write chunk */
587  if (wrchunk) {
588  __be32 *w = (__be32 *) cur_wchunk;
589  if (*w++ != xdr_zero)
590  return -1;
591  cur_wchunk = (struct rpcrdma_write_chunk *) w;
592  }
593  if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
594  return -1;
595 
596  *iptrp = (__be32 *) cur_wchunk;
597  return total_len;
598 }
599 
600 /*
601  * Scatter inline received data back into provided iov's.
602  */
603 static void
604 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
605 {
606  int i, npages, curlen, olen;
607  char *destp;
608  struct page **ppages;
609  int page_base;
610 
611  curlen = rqst->rq_rcv_buf.head[0].iov_len;
612  if (curlen > copy_len) { /* write chunk header fixup */
613  curlen = copy_len;
614  rqst->rq_rcv_buf.head[0].iov_len = curlen;
615  }
616 
617  dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
618  __func__, srcp, copy_len, curlen);
619 
620  /* Shift pointer for first receive segment only */
621  rqst->rq_rcv_buf.head[0].iov_base = srcp;
622  srcp += curlen;
623  copy_len -= curlen;
624 
625  olen = copy_len;
626  i = 0;
627  rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
628  page_base = rqst->rq_rcv_buf.page_base;
629  ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
630  page_base &= ~PAGE_MASK;
631 
632  if (copy_len && rqst->rq_rcv_buf.page_len) {
633  npages = PAGE_ALIGN(page_base +
634  rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
635  for (; i < npages; i++) {
636  curlen = PAGE_SIZE - page_base;
637  if (curlen > copy_len)
638  curlen = copy_len;
639  dprintk("RPC: %s: page %d"
640  " srcp 0x%p len %d curlen %d\n",
641  __func__, i, srcp, copy_len, curlen);
642  destp = kmap_atomic(ppages[i]);
643  memcpy(destp + page_base, srcp, curlen);
644  flush_dcache_page(ppages[i]);
645  kunmap_atomic(destp);
646  srcp += curlen;
647  copy_len -= curlen;
648  if (copy_len == 0)
649  break;
650  page_base = 0;
651  }
652  rqst->rq_rcv_buf.page_len = olen - copy_len;
653  } else
654  rqst->rq_rcv_buf.page_len = 0;
655 
656  if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
657  curlen = copy_len;
658  if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
659  curlen = rqst->rq_rcv_buf.tail[0].iov_len;
660  if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
661  memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
662  dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
663  __func__, srcp, copy_len, curlen);
664  rqst->rq_rcv_buf.tail[0].iov_len = curlen;
665  copy_len -= curlen; ++i;
666  } else
667  rqst->rq_rcv_buf.tail[0].iov_len = 0;
668 
669  if (pad) {
670  /* implicit padding on terminal chunk */
671  unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
672  while (pad--)
673  p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
674  }
675 
676  if (copy_len)
677  dprintk("RPC: %s: %d bytes in"
678  " %d extra segments (%d lost)\n",
679  __func__, olen, i, copy_len);
680 
681  /* TBD avoid a warning from call_decode() */
682  rqst->rq_private_buf = rqst->rq_rcv_buf;
683 }
684 
685 /*
686  * This function is called when an async event is posted to
687  * the connection which changes the connection state. All it
688  * does at this point is mark the connection up/down, the rpc
689  * timers do the rest.
690  */
691 void
693 {
694  struct rpc_xprt *xprt = ep->rep_xprt;
695 
696  spin_lock_bh(&xprt->transport_lock);
697  if (++xprt->connect_cookie == 0) /* maintain a reserved value */
698  ++xprt->connect_cookie;
699  if (ep->rep_connected > 0) {
700  if (!xprt_test_and_set_connected(xprt))
701  xprt_wake_pending_tasks(xprt, 0);
702  } else {
703  if (xprt_test_and_clear_connected(xprt))
705  }
706  spin_unlock_bh(&xprt->transport_lock);
707 }
708 
709 /*
710  * This function is called when memory window unbind which we are waiting
711  * for completes. Just use rr_func (zeroed by upcall) to signal completion.
712  */
713 static void
714 rpcrdma_unbind_func(struct rpcrdma_rep *rep)
715 {
716  wake_up(&rep->rr_unbind);
717 }
718 
719 /*
720  * Called as a tasklet to do req/reply match and complete a request
721  * Errors must result in the RPC task either being awakened, or
722  * allowed to timeout, to discover the errors at that time.
723  */
724 void
726 {
727  struct rpcrdma_msg *headerp;
728  struct rpcrdma_req *req;
729  struct rpc_rqst *rqst;
730  struct rpc_xprt *xprt = rep->rr_xprt;
731  struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
732  __be32 *iptr;
733  int i, rdmalen, status;
734 
735  /* Check status. If bad, signal disconnect and return rep to pool */
736  if (rep->rr_len == ~0U) {
738  if (r_xprt->rx_ep.rep_connected == 1) {
739  r_xprt->rx_ep.rep_connected = -EIO;
740  rpcrdma_conn_func(&r_xprt->rx_ep);
741  }
742  return;
743  }
744  if (rep->rr_len < 28) {
745  dprintk("RPC: %s: short/invalid reply\n", __func__);
746  goto repost;
747  }
748  headerp = (struct rpcrdma_msg *) rep->rr_base;
749  if (headerp->rm_vers != xdr_one) {
750  dprintk("RPC: %s: invalid version %d\n",
751  __func__, ntohl(headerp->rm_vers));
752  goto repost;
753  }
754 
755  /* Get XID and try for a match. */
756  spin_lock(&xprt->transport_lock);
757  rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
758  if (rqst == NULL) {
759  spin_unlock(&xprt->transport_lock);
760  dprintk("RPC: %s: reply 0x%p failed "
761  "to match any request xid 0x%08x len %d\n",
762  __func__, rep, headerp->rm_xid, rep->rr_len);
763 repost:
764  r_xprt->rx_stats.bad_reply_count++;
766  if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
768 
769  return;
770  }
771 
772  /* get request object */
773  req = rpcr_to_rdmar(rqst);
774  if (req->rl_reply) {
775  spin_unlock(&xprt->transport_lock);
776  dprintk("RPC: %s: duplicate reply 0x%p to RPC "
777  "request 0x%p: xid 0x%08x\n", __func__, rep, req,
778  headerp->rm_xid);
779  goto repost;
780  }
781 
782  dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
783  " RPC request 0x%p xid 0x%08x\n",
784  __func__, rep, req, rqst, headerp->rm_xid);
785 
786  /* from here on, the reply is no longer an orphan */
787  req->rl_reply = rep;
788 
789  /* check for expected message types */
790  /* The order of some of these tests is important. */
791  switch (headerp->rm_type) {
792  case htonl(RDMA_MSG):
793  /* never expect read chunks */
794  /* never expect reply chunks (two ways to check) */
795  /* never expect write chunks without having offered RDMA */
796  if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
797  (headerp->rm_body.rm_chunks[1] == xdr_zero &&
798  headerp->rm_body.rm_chunks[2] != xdr_zero) ||
799  (headerp->rm_body.rm_chunks[1] != xdr_zero &&
800  req->rl_nchunks == 0))
801  goto badheader;
802  if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
803  /* count any expected write chunks in read reply */
804  /* start at write chunk array count */
805  iptr = &headerp->rm_body.rm_chunks[2];
806  rdmalen = rpcrdma_count_chunks(rep,
807  req->rl_nchunks, 1, &iptr);
808  /* check for validity, and no reply chunk after */
809  if (rdmalen < 0 || *iptr++ != xdr_zero)
810  goto badheader;
811  rep->rr_len -=
812  ((unsigned char *)iptr - (unsigned char *)headerp);
813  status = rep->rr_len + rdmalen;
814  r_xprt->rx_stats.total_rdma_reply += rdmalen;
815  /* special case - last chunk may omit padding */
816  if (rdmalen &= 3) {
817  rdmalen = 4 - rdmalen;
818  status += rdmalen;
819  }
820  } else {
821  /* else ordinary inline */
822  rdmalen = 0;
823  iptr = (__be32 *)((unsigned char *)headerp + 28);
824  rep->rr_len -= 28; /*sizeof *headerp;*/
825  status = rep->rr_len;
826  }
827  /* Fix up the rpc results for upper layer */
828  rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
829  break;
830 
831  case htonl(RDMA_NOMSG):
832  /* never expect read or write chunks, always reply chunks */
833  if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
834  headerp->rm_body.rm_chunks[1] != xdr_zero ||
835  headerp->rm_body.rm_chunks[2] != xdr_one ||
836  req->rl_nchunks == 0)
837  goto badheader;
838  iptr = (__be32 *)((unsigned char *)headerp + 28);
839  rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
840  if (rdmalen < 0)
841  goto badheader;
842  r_xprt->rx_stats.total_rdma_reply += rdmalen;
843  /* Reply chunk buffer already is the reply vector - no fixup. */
844  status = rdmalen;
845  break;
846 
847 badheader:
848  default:
849  dprintk("%s: invalid rpcrdma reply header (type %d):"
850  " chunks[012] == %d %d %d"
851  " expected chunks <= %d\n",
852  __func__, ntohl(headerp->rm_type),
853  headerp->rm_body.rm_chunks[0],
854  headerp->rm_body.rm_chunks[1],
855  headerp->rm_body.rm_chunks[2],
856  req->rl_nchunks);
857  status = -EIO;
858  r_xprt->rx_stats.bad_reply_count++;
859  break;
860  }
861 
862  /* If using mw bind, start the deregister process now. */
863  /* (Note: if mr_free(), cannot perform it here, in tasklet context) */
864  if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
865  case RPCRDMA_MEMWINDOWS:
866  for (i = 0; req->rl_nchunks-- > 1;)
868  &req->rl_segments[i], r_xprt, NULL);
869  /* Optionally wait (not here) for unbinds to complete */
870  rep->rr_func = rpcrdma_unbind_func;
872  r_xprt, rep);
873  break;
875  for (i = 0; req->rl_nchunks--;)
877  r_xprt, NULL);
878  break;
879  default:
880  break;
881  }
882 
883  dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
884  __func__, xprt, rqst, status);
885  xprt_complete_rqst(rqst->rq_task, status);
886  spin_unlock(&xprt->transport_lock);
887 }