Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtc-rs5c372.c
Go to the documentation of this file.
1 /*
2  * An I2C driver for Ricoh RS5C372, R2025S/D and RV5C38[67] RTCs
3  *
4  * Copyright (C) 2005 Pavel Mironchik <[email protected]>
5  * Copyright (C) 2006 Tower Technologies
6  * Copyright (C) 2008 Paul Mundt
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/i2c.h>
14 #include <linux/rtc.h>
15 #include <linux/bcd.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 
19 #define DRV_VERSION "0.6"
20 
21 
22 /*
23  * Ricoh has a family of I2C based RTCs, which differ only slightly from
24  * each other. Differences center on pinout (e.g. how many interrupts,
25  * output clock, etc) and how the control registers are used. The '372
26  * is significant only because that's the one this driver first supported.
27  */
28 #define RS5C372_REG_SECS 0
29 #define RS5C372_REG_MINS 1
30 #define RS5C372_REG_HOURS 2
31 #define RS5C372_REG_WDAY 3
32 #define RS5C372_REG_DAY 4
33 #define RS5C372_REG_MONTH 5
34 #define RS5C372_REG_YEAR 6
35 #define RS5C372_REG_TRIM 7
36 # define RS5C372_TRIM_XSL 0x80
37 # define RS5C372_TRIM_MASK 0x7F
38 
39 #define RS5C_REG_ALARM_A_MIN 8 /* or ALARM_W */
40 #define RS5C_REG_ALARM_A_HOURS 9
41 #define RS5C_REG_ALARM_A_WDAY 10
42 
43 #define RS5C_REG_ALARM_B_MIN 11 /* or ALARM_D */
44 #define RS5C_REG_ALARM_B_HOURS 12
45 #define RS5C_REG_ALARM_B_WDAY 13 /* (ALARM_B only) */
46 
47 #define RS5C_REG_CTRL1 14
48 # define RS5C_CTRL1_AALE (1 << 7) /* or WALE */
49 # define RS5C_CTRL1_BALE (1 << 6) /* or DALE */
50 # define RV5C387_CTRL1_24 (1 << 5)
51 # define RS5C372A_CTRL1_SL1 (1 << 5)
52 # define RS5C_CTRL1_CT_MASK (7 << 0)
53 # define RS5C_CTRL1_CT0 (0 << 0) /* no periodic irq */
54 # define RS5C_CTRL1_CT4 (4 << 0) /* 1 Hz level irq */
55 #define RS5C_REG_CTRL2 15
56 # define RS5C372_CTRL2_24 (1 << 5)
57 # define R2025_CTRL2_XST (1 << 5)
58 # define RS5C_CTRL2_XSTP (1 << 4) /* only if !R2025S/D */
59 # define RS5C_CTRL2_CTFG (1 << 2)
60 # define RS5C_CTRL2_AAFG (1 << 1) /* or WAFG */
61 # define RS5C_CTRL2_BAFG (1 << 0) /* or DAFG */
62 
63 
64 /* to read (style 1) or write registers starting at R */
65 #define RS5C_ADDR(R) (((R) << 4) | 0)
66 
67 
68 enum rtc_type {
69  rtc_undef = 0,
75 };
76 
77 static const struct i2c_device_id rs5c372_id[] = {
78  { "r2025sd", rtc_r2025sd },
79  { "rs5c372a", rtc_rs5c372a },
80  { "rs5c372b", rtc_rs5c372b },
81  { "rv5c386", rtc_rv5c386 },
82  { "rv5c387a", rtc_rv5c387a },
83  { }
84 };
85 MODULE_DEVICE_TABLE(i2c, rs5c372_id);
86 
87 /* REVISIT: this assumes that:
88  * - we're in the 21st century, so it's safe to ignore the century
89  * bit for rv5c38[67] (REG_MONTH bit 7);
90  * - we should use ALARM_A not ALARM_B (may be wrong on some boards)
91  */
92 struct rs5c372 {
93  struct i2c_client *client;
94  struct rtc_device *rtc;
95  enum rtc_type type;
96  unsigned time24:1;
97  unsigned has_irq:1;
98  unsigned smbus:1;
99  char buf[17];
100  char *regs;
101 };
102 
103 static int rs5c_get_regs(struct rs5c372 *rs5c)
104 {
105  struct i2c_client *client = rs5c->client;
106  struct i2c_msg msgs[] = {
107  {
108  .addr = client->addr,
109  .flags = I2C_M_RD,
110  .len = sizeof(rs5c->buf),
111  .buf = rs5c->buf
112  },
113  };
114 
115  /* This implements the third reading method from the datasheet, using
116  * an internal address that's reset after each transaction (by STOP)
117  * to 0x0f ... so we read extra registers, and skip the first one.
118  *
119  * The first method doesn't work with the iop3xx adapter driver, on at
120  * least 80219 chips; this works around that bug.
121  *
122  * The third method on the other hand doesn't work for the SMBus-only
123  * configurations, so we use the the first method there, stripping off
124  * the extra register in the process.
125  */
126  if (rs5c->smbus) {
128  int size = sizeof(rs5c->buf) - 1;
129 
130  if (i2c_smbus_read_i2c_block_data(client, addr, size,
131  rs5c->buf + 1) != size) {
132  dev_warn(&client->dev, "can't read registers\n");
133  return -EIO;
134  }
135  } else {
136  if ((i2c_transfer(client->adapter, msgs, 1)) != 1) {
137  dev_warn(&client->dev, "can't read registers\n");
138  return -EIO;
139  }
140  }
141 
142  dev_dbg(&client->dev,
143  "%02x %02x %02x (%02x) %02x %02x %02x (%02x), "
144  "%02x %02x %02x, %02x %02x %02x; %02x %02x\n",
145  rs5c->regs[0], rs5c->regs[1], rs5c->regs[2], rs5c->regs[3],
146  rs5c->regs[4], rs5c->regs[5], rs5c->regs[6], rs5c->regs[7],
147  rs5c->regs[8], rs5c->regs[9], rs5c->regs[10], rs5c->regs[11],
148  rs5c->regs[12], rs5c->regs[13], rs5c->regs[14], rs5c->regs[15]);
149 
150  return 0;
151 }
152 
153 static unsigned rs5c_reg2hr(struct rs5c372 *rs5c, unsigned reg)
154 {
155  unsigned hour;
156 
157  if (rs5c->time24)
158  return bcd2bin(reg & 0x3f);
159 
160  hour = bcd2bin(reg & 0x1f);
161  if (hour == 12)
162  hour = 0;
163  if (reg & 0x20)
164  hour += 12;
165  return hour;
166 }
167 
168 static unsigned rs5c_hr2reg(struct rs5c372 *rs5c, unsigned hour)
169 {
170  if (rs5c->time24)
171  return bin2bcd(hour);
172 
173  if (hour > 12)
174  return 0x20 | bin2bcd(hour - 12);
175  if (hour == 12)
176  return 0x20 | bin2bcd(12);
177  if (hour == 0)
178  return bin2bcd(12);
179  return bin2bcd(hour);
180 }
181 
182 static int rs5c372_get_datetime(struct i2c_client *client, struct rtc_time *tm)
183 {
184  struct rs5c372 *rs5c = i2c_get_clientdata(client);
185  int status = rs5c_get_regs(rs5c);
186 
187  if (status < 0)
188  return status;
189 
190  tm->tm_sec = bcd2bin(rs5c->regs[RS5C372_REG_SECS] & 0x7f);
191  tm->tm_min = bcd2bin(rs5c->regs[RS5C372_REG_MINS] & 0x7f);
192  tm->tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C372_REG_HOURS]);
193 
194  tm->tm_wday = bcd2bin(rs5c->regs[RS5C372_REG_WDAY] & 0x07);
195  tm->tm_mday = bcd2bin(rs5c->regs[RS5C372_REG_DAY] & 0x3f);
196 
197  /* tm->tm_mon is zero-based */
198  tm->tm_mon = bcd2bin(rs5c->regs[RS5C372_REG_MONTH] & 0x1f) - 1;
199 
200  /* year is 1900 + tm->tm_year */
201  tm->tm_year = bcd2bin(rs5c->regs[RS5C372_REG_YEAR]) + 100;
202 
203  dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
204  "mday=%d, mon=%d, year=%d, wday=%d\n",
205  __func__,
206  tm->tm_sec, tm->tm_min, tm->tm_hour,
207  tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
208 
209  /* rtc might need initialization */
210  return rtc_valid_tm(tm);
211 }
212 
213 static int rs5c372_set_datetime(struct i2c_client *client, struct rtc_time *tm)
214 {
215  struct rs5c372 *rs5c = i2c_get_clientdata(client);
216  unsigned char buf[7];
217  int addr;
218 
219  dev_dbg(&client->dev, "%s: tm is secs=%d, mins=%d, hours=%d "
220  "mday=%d, mon=%d, year=%d, wday=%d\n",
221  __func__,
222  tm->tm_sec, tm->tm_min, tm->tm_hour,
223  tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
224 
225  addr = RS5C_ADDR(RS5C372_REG_SECS);
226  buf[0] = bin2bcd(tm->tm_sec);
227  buf[1] = bin2bcd(tm->tm_min);
228  buf[2] = rs5c_hr2reg(rs5c, tm->tm_hour);
229  buf[3] = bin2bcd(tm->tm_wday);
230  buf[4] = bin2bcd(tm->tm_mday);
231  buf[5] = bin2bcd(tm->tm_mon + 1);
232  buf[6] = bin2bcd(tm->tm_year - 100);
233 
234  if (i2c_smbus_write_i2c_block_data(client, addr, sizeof(buf), buf) < 0) {
235  dev_err(&client->dev, "%s: write error\n", __func__);
236  return -EIO;
237  }
238 
239  return 0;
240 }
241 
242 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
243 #define NEED_TRIM
244 #endif
245 
246 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)
247 #define NEED_TRIM
248 #endif
249 
250 #ifdef NEED_TRIM
251 static int rs5c372_get_trim(struct i2c_client *client, int *osc, int *trim)
252 {
253  struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
254  u8 tmp = rs5c372->regs[RS5C372_REG_TRIM];
255 
256  if (osc)
257  *osc = (tmp & RS5C372_TRIM_XSL) ? 32000 : 32768;
258 
259  if (trim) {
260  dev_dbg(&client->dev, "%s: raw trim=%x\n", __func__, tmp);
261  tmp &= RS5C372_TRIM_MASK;
262  if (tmp & 0x3e) {
263  int t = tmp & 0x3f;
264 
265  if (tmp & 0x40)
266  t = (~t | (s8)0xc0) + 1;
267  else
268  t = t - 1;
269 
270  tmp = t * 2;
271  } else
272  tmp = 0;
273  *trim = tmp;
274  }
275 
276  return 0;
277 }
278 #endif
279 
280 static int rs5c372_rtc_read_time(struct device *dev, struct rtc_time *tm)
281 {
282  return rs5c372_get_datetime(to_i2c_client(dev), tm);
283 }
284 
285 static int rs5c372_rtc_set_time(struct device *dev, struct rtc_time *tm)
286 {
287  return rs5c372_set_datetime(to_i2c_client(dev), tm);
288 }
289 
290 
291 static int rs5c_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
292 {
293  struct i2c_client *client = to_i2c_client(dev);
294  struct rs5c372 *rs5c = i2c_get_clientdata(client);
295  unsigned char buf;
296  int status, addr;
297 
298  buf = rs5c->regs[RS5C_REG_CTRL1];
299 
300  if (!rs5c->has_irq)
301  return -EINVAL;
302 
303  status = rs5c_get_regs(rs5c);
304  if (status < 0)
305  return status;
306 
307  addr = RS5C_ADDR(RS5C_REG_CTRL1);
308  if (enabled)
309  buf |= RS5C_CTRL1_AALE;
310  else
311  buf &= ~RS5C_CTRL1_AALE;
312 
313  if (i2c_smbus_write_byte_data(client, addr, buf) < 0) {
314  printk(KERN_WARNING "%s: can't update alarm\n",
315  rs5c->rtc->name);
316  status = -EIO;
317  } else
318  rs5c->regs[RS5C_REG_CTRL1] = buf;
319 
320  return status;
321 }
322 
323 
324 /* NOTE: Since RTC_WKALM_{RD,SET} were originally defined for EFI,
325  * which only exposes a polled programming interface; and since
326  * these calls map directly to those EFI requests; we don't demand
327  * we have an IRQ for this chip when we go through this API.
328  *
329  * The older x86_pc derived RTC_ALM_{READ,SET} calls require irqs
330  * though, managed through RTC_AIE_{ON,OFF} requests.
331  */
332 
333 static int rs5c_read_alarm(struct device *dev, struct rtc_wkalrm *t)
334 {
335  struct i2c_client *client = to_i2c_client(dev);
336  struct rs5c372 *rs5c = i2c_get_clientdata(client);
337  int status;
338 
339  status = rs5c_get_regs(rs5c);
340  if (status < 0)
341  return status;
342 
343  /* report alarm time */
344  t->time.tm_sec = 0;
345  t->time.tm_min = bcd2bin(rs5c->regs[RS5C_REG_ALARM_A_MIN] & 0x7f);
346  t->time.tm_hour = rs5c_reg2hr(rs5c, rs5c->regs[RS5C_REG_ALARM_A_HOURS]);
347  t->time.tm_mday = -1;
348  t->time.tm_mon = -1;
349  t->time.tm_year = -1;
350  t->time.tm_wday = -1;
351  t->time.tm_yday = -1;
352  t->time.tm_isdst = -1;
353 
354  /* ... and status */
355  t->enabled = !!(rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE);
356  t->pending = !!(rs5c->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_AAFG);
357 
358  return 0;
359 }
360 
361 static int rs5c_set_alarm(struct device *dev, struct rtc_wkalrm *t)
362 {
363  struct i2c_client *client = to_i2c_client(dev);
364  struct rs5c372 *rs5c = i2c_get_clientdata(client);
365  int status, addr, i;
366  unsigned char buf[3];
367 
368  /* only handle up to 24 hours in the future, like RTC_ALM_SET */
369  if (t->time.tm_mday != -1
370  || t->time.tm_mon != -1
371  || t->time.tm_year != -1)
372  return -EINVAL;
373 
374  /* REVISIT: round up tm_sec */
375 
376  /* if needed, disable irq (clears pending status) */
377  status = rs5c_get_regs(rs5c);
378  if (status < 0)
379  return status;
380  if (rs5c->regs[RS5C_REG_CTRL1] & RS5C_CTRL1_AALE) {
381  addr = RS5C_ADDR(RS5C_REG_CTRL1);
382  buf[0] = rs5c->regs[RS5C_REG_CTRL1] & ~RS5C_CTRL1_AALE;
383  if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0) {
384  pr_debug("%s: can't disable alarm\n", rs5c->rtc->name);
385  return -EIO;
386  }
387  rs5c->regs[RS5C_REG_CTRL1] = buf[0];
388  }
389 
390  /* set alarm */
391  buf[0] = bin2bcd(t->time.tm_min);
392  buf[1] = rs5c_hr2reg(rs5c, t->time.tm_hour);
393  buf[2] = 0x7f; /* any/all days */
394 
395  for (i = 0; i < sizeof(buf); i++) {
396  addr = RS5C_ADDR(RS5C_REG_ALARM_A_MIN + i);
397  if (i2c_smbus_write_byte_data(client, addr, buf[i]) < 0) {
398  pr_debug("%s: can't set alarm time\n", rs5c->rtc->name);
399  return -EIO;
400  }
401  }
402 
403  /* ... and maybe enable its irq */
404  if (t->enabled) {
405  addr = RS5C_ADDR(RS5C_REG_CTRL1);
406  buf[0] = rs5c->regs[RS5C_REG_CTRL1] | RS5C_CTRL1_AALE;
407  if (i2c_smbus_write_byte_data(client, addr, buf[0]) < 0)
408  printk(KERN_WARNING "%s: can't enable alarm\n",
409  rs5c->rtc->name);
410  rs5c->regs[RS5C_REG_CTRL1] = buf[0];
411  }
412 
413  return 0;
414 }
415 
416 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
417 
418 static int rs5c372_rtc_proc(struct device *dev, struct seq_file *seq)
419 {
420  int err, osc, trim;
421 
422  err = rs5c372_get_trim(to_i2c_client(dev), &osc, &trim);
423  if (err == 0) {
424  seq_printf(seq, "crystal\t\t: %d.%03d KHz\n",
425  osc / 1000, osc % 1000);
426  seq_printf(seq, "trim\t\t: %d\n", trim);
427  }
428 
429  return 0;
430 }
431 
432 #else
433 #define rs5c372_rtc_proc NULL
434 #endif
435 
436 static const struct rtc_class_ops rs5c372_rtc_ops = {
437  .proc = rs5c372_rtc_proc,
438  .read_time = rs5c372_rtc_read_time,
439  .set_time = rs5c372_rtc_set_time,
440  .read_alarm = rs5c_read_alarm,
441  .set_alarm = rs5c_set_alarm,
442  .alarm_irq_enable = rs5c_rtc_alarm_irq_enable,
443 };
444 
445 #if defined(CONFIG_RTC_INTF_SYSFS) || defined(CONFIG_RTC_INTF_SYSFS_MODULE)
446 
447 static ssize_t rs5c372_sysfs_show_trim(struct device *dev,
448  struct device_attribute *attr, char *buf)
449 {
450  int err, trim;
451 
452  err = rs5c372_get_trim(to_i2c_client(dev), NULL, &trim);
453  if (err)
454  return err;
455 
456  return sprintf(buf, "%d\n", trim);
457 }
458 static DEVICE_ATTR(trim, S_IRUGO, rs5c372_sysfs_show_trim, NULL);
459 
460 static ssize_t rs5c372_sysfs_show_osc(struct device *dev,
461  struct device_attribute *attr, char *buf)
462 {
463  int err, osc;
464 
465  err = rs5c372_get_trim(to_i2c_client(dev), &osc, NULL);
466  if (err)
467  return err;
468 
469  return sprintf(buf, "%d.%03d KHz\n", osc / 1000, osc % 1000);
470 }
471 static DEVICE_ATTR(osc, S_IRUGO, rs5c372_sysfs_show_osc, NULL);
472 
473 static int rs5c_sysfs_register(struct device *dev)
474 {
475  int err;
476 
477  err = device_create_file(dev, &dev_attr_trim);
478  if (err)
479  return err;
480  err = device_create_file(dev, &dev_attr_osc);
481  if (err)
482  device_remove_file(dev, &dev_attr_trim);
483 
484  return err;
485 }
486 
487 static void rs5c_sysfs_unregister(struct device *dev)
488 {
489  device_remove_file(dev, &dev_attr_trim);
490  device_remove_file(dev, &dev_attr_osc);
491 }
492 
493 #else
494 static int rs5c_sysfs_register(struct device *dev)
495 {
496  return 0;
497 }
498 
499 static void rs5c_sysfs_unregister(struct device *dev)
500 {
501  /* nothing */
502 }
503 #endif /* SYSFS */
504 
505 static struct i2c_driver rs5c372_driver;
506 
507 static int rs5c_oscillator_setup(struct rs5c372 *rs5c372)
508 {
509  unsigned char buf[2];
510  int addr, i, ret = 0;
511 
512  if (rs5c372->type == rtc_r2025sd) {
513  if (!(rs5c372->regs[RS5C_REG_CTRL2] & R2025_CTRL2_XST))
514  return ret;
515  rs5c372->regs[RS5C_REG_CTRL2] &= ~R2025_CTRL2_XST;
516  } else {
517  if (!(rs5c372->regs[RS5C_REG_CTRL2] & RS5C_CTRL2_XSTP))
518  return ret;
519  rs5c372->regs[RS5C_REG_CTRL2] &= ~RS5C_CTRL2_XSTP;
520  }
521 
522  addr = RS5C_ADDR(RS5C_REG_CTRL1);
523  buf[0] = rs5c372->regs[RS5C_REG_CTRL1];
524  buf[1] = rs5c372->regs[RS5C_REG_CTRL2];
525 
526  /* use 24hr mode */
527  switch (rs5c372->type) {
528  case rtc_rs5c372a:
529  case rtc_rs5c372b:
530  buf[1] |= RS5C372_CTRL2_24;
531  rs5c372->time24 = 1;
532  break;
533  case rtc_r2025sd:
534  case rtc_rv5c386:
535  case rtc_rv5c387a:
536  buf[0] |= RV5C387_CTRL1_24;
537  rs5c372->time24 = 1;
538  break;
539  default:
540  /* impossible */
541  break;
542  }
543 
544  for (i = 0; i < sizeof(buf); i++) {
545  addr = RS5C_ADDR(RS5C_REG_CTRL1 + i);
546  ret = i2c_smbus_write_byte_data(rs5c372->client, addr, buf[i]);
547  if (unlikely(ret < 0))
548  return ret;
549  }
550 
551  rs5c372->regs[RS5C_REG_CTRL1] = buf[0];
552  rs5c372->regs[RS5C_REG_CTRL2] = buf[1];
553 
554  return 0;
555 }
556 
557 static int rs5c372_probe(struct i2c_client *client,
558  const struct i2c_device_id *id)
559 {
560  int err = 0;
561  int smbus_mode = 0;
562  struct rs5c372 *rs5c372;
563  struct rtc_time tm;
564 
565  dev_dbg(&client->dev, "%s\n", __func__);
566 
567  if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
569  /*
570  * If we don't have any master mode adapter, try breaking
571  * it down in to the barest of capabilities.
572  */
573  if (i2c_check_functionality(client->adapter,
576  smbus_mode = 1;
577  else {
578  /* Still no good, give up */
579  err = -ENODEV;
580  goto exit;
581  }
582  }
583 
584  if (!(rs5c372 = kzalloc(sizeof(struct rs5c372), GFP_KERNEL))) {
585  err = -ENOMEM;
586  goto exit;
587  }
588 
589  rs5c372->client = client;
590  i2c_set_clientdata(client, rs5c372);
591  rs5c372->type = id->driver_data;
592 
593  /* we read registers 0x0f then 0x00-0x0f; skip the first one */
594  rs5c372->regs = &rs5c372->buf[1];
595  rs5c372->smbus = smbus_mode;
596 
597  err = rs5c_get_regs(rs5c372);
598  if (err < 0)
599  goto exit_kfree;
600 
601  /* clock may be set for am/pm or 24 hr time */
602  switch (rs5c372->type) {
603  case rtc_rs5c372a:
604  case rtc_rs5c372b:
605  /* alarm uses ALARM_A; and nINTRA on 372a, nINTR on 372b.
606  * so does periodic irq, except some 327a modes.
607  */
608  if (rs5c372->regs[RS5C_REG_CTRL2] & RS5C372_CTRL2_24)
609  rs5c372->time24 = 1;
610  break;
611  case rtc_r2025sd:
612  case rtc_rv5c386:
613  case rtc_rv5c387a:
614  if (rs5c372->regs[RS5C_REG_CTRL1] & RV5C387_CTRL1_24)
615  rs5c372->time24 = 1;
616  /* alarm uses ALARM_W; and nINTRB for alarm and periodic
617  * irq, on both 386 and 387
618  */
619  break;
620  default:
621  dev_err(&client->dev, "unknown RTC type\n");
622  goto exit_kfree;
623  }
624 
625  /* if the oscillator lost power and no other software (like
626  * the bootloader) set it up, do it here.
627  *
628  * The R2025S/D does this a little differently than the other
629  * parts, so we special case that..
630  */
631  err = rs5c_oscillator_setup(rs5c372);
632  if (unlikely(err < 0)) {
633  dev_err(&client->dev, "setup error\n");
634  goto exit_kfree;
635  }
636 
637  if (rs5c372_get_datetime(client, &tm) < 0)
638  dev_warn(&client->dev, "clock needs to be set\n");
639 
640  dev_info(&client->dev, "%s found, %s, driver version " DRV_VERSION "\n",
641  ({ char *s; switch (rs5c372->type) {
642  case rtc_r2025sd: s = "r2025sd"; break;
643  case rtc_rs5c372a: s = "rs5c372a"; break;
644  case rtc_rs5c372b: s = "rs5c372b"; break;
645  case rtc_rv5c386: s = "rv5c386"; break;
646  case rtc_rv5c387a: s = "rv5c387a"; break;
647  default: s = "chip"; break;
648  }; s;}),
649  rs5c372->time24 ? "24hr" : "am/pm"
650  );
651 
652  /* REVISIT use client->irq to register alarm irq ... */
653 
654  rs5c372->rtc = rtc_device_register(rs5c372_driver.driver.name,
655  &client->dev, &rs5c372_rtc_ops, THIS_MODULE);
656 
657  if (IS_ERR(rs5c372->rtc)) {
658  err = PTR_ERR(rs5c372->rtc);
659  goto exit_kfree;
660  }
661 
662  err = rs5c_sysfs_register(&client->dev);
663  if (err)
664  goto exit_devreg;
665 
666  return 0;
667 
668 exit_devreg:
669  rtc_device_unregister(rs5c372->rtc);
670 
671 exit_kfree:
672  kfree(rs5c372);
673 
674 exit:
675  return err;
676 }
677 
678 static int rs5c372_remove(struct i2c_client *client)
679 {
680  struct rs5c372 *rs5c372 = i2c_get_clientdata(client);
681 
682  rtc_device_unregister(rs5c372->rtc);
683  rs5c_sysfs_unregister(&client->dev);
684  kfree(rs5c372);
685  return 0;
686 }
687 
688 static struct i2c_driver rs5c372_driver = {
689  .driver = {
690  .name = "rtc-rs5c372",
691  },
692  .probe = rs5c372_probe,
693  .remove = rs5c372_remove,
694  .id_table = rs5c372_id,
695 };
696 
697 module_i2c_driver(rs5c372_driver);
698 
700  "Pavel Mironchik <[email protected]>, "
701  "Alessandro Zummo <[email protected]>, "
702  "Paul Mundt <[email protected]>");
703 MODULE_DESCRIPTION("Ricoh RS5C372 RTC driver");
704 MODULE_LICENSE("GPL");