Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ieee80211_crypt_wep.c
Go to the documentation of this file.
1 /*
2  * Host AP crypt: host-based WEP encryption implementation for Host AP driver
3  *
4  * Copyright (c) 2002-2004, Jouni Malinen <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation. See README and COPYING for
9  * more details.
10  */
11 
12 //#include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/random.h>
17 #include <linux/skbuff.h>
18 #include <asm/string.h>
19 
20 #include "ieee80211.h"
21 
22 #include <linux/crypto.h>
23  #include <linux/scatterlist.h>
24 #include <linux/crc32.h>
25 
26 MODULE_AUTHOR("Jouni Malinen");
27 MODULE_DESCRIPTION("Host AP crypt: WEP");
28 MODULE_LICENSE("GPL");
29 
30 struct prism2_wep_data {
31  u32 iv;
32 #define WEP_KEY_LEN 13
33  u8 key[WEP_KEY_LEN + 1];
34  u8 key_len;
35  u8 key_idx;
36  struct crypto_blkcipher *tx_tfm;
37  struct crypto_blkcipher *rx_tfm;
38 };
39 
40 
41 static void * prism2_wep_init(int keyidx)
42 {
43  struct prism2_wep_data *priv;
44 
45  priv = kzalloc(sizeof(*priv), GFP_ATOMIC);
46  if (priv == NULL)
47  goto fail;
48  priv->key_idx = keyidx;
49 
50  priv->tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
51  if (IS_ERR(priv->tx_tfm)) {
52  printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
53  "crypto API arc4\n");
54  priv->tx_tfm = NULL;
55  goto fail;
56  }
57  priv->rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
58  if (IS_ERR(priv->rx_tfm)) {
59  printk(KERN_DEBUG "ieee80211_crypt_wep: could not allocate "
60  "crypto API arc4\n");
61  priv->rx_tfm = NULL;
62  goto fail;
63  }
64 
65  /* start WEP IV from a random value */
66  get_random_bytes(&priv->iv, 4);
67 
68  return priv;
69 
70 fail:
71  if (priv) {
72  if (priv->tx_tfm)
73  crypto_free_blkcipher(priv->tx_tfm);
74  if (priv->rx_tfm)
75  crypto_free_blkcipher(priv->rx_tfm);
76  kfree(priv);
77  }
78 
79  return NULL;
80 }
81 
82 
83 static void prism2_wep_deinit(void *priv)
84 {
85  struct prism2_wep_data *_priv = priv;
86 
87  if (_priv) {
88  if (_priv->tx_tfm)
89  crypto_free_blkcipher(_priv->tx_tfm);
90  if (_priv->rx_tfm)
91  crypto_free_blkcipher(_priv->rx_tfm);
92  }
93  kfree(priv);
94 }
95 
96 /* Perform WEP encryption on given skb that has at least 4 bytes of headroom
97  * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted,
98  * so the payload length increases with 8 bytes.
99  *
100  * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
101  */
102 static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv)
103 {
104  struct prism2_wep_data *wep = priv;
105  u32 klen, len;
106  u8 key[WEP_KEY_LEN + 3];
107  u8 *pos;
108  cb_desc *tcb_desc = (cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
109  struct blkcipher_desc desc = {.tfm = wep->tx_tfm};
110  u32 crc;
111  u8 *icv;
112  struct scatterlist sg;
113  if (skb_headroom(skb) < 4 || skb_tailroom(skb) < 4 ||
114  skb->len < hdr_len)
115  return -1;
116 
117  len = skb->len - hdr_len;
118  pos = skb_push(skb, 4);
119  memmove(pos, pos + 4, hdr_len);
120  pos += hdr_len;
121 
122  klen = 3 + wep->key_len;
123 
124  wep->iv++;
125 
126  /* Fluhrer, Mantin, and Shamir have reported weaknesses in the key
127  * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N)
128  * can be used to speedup attacks, so avoid using them. */
129  if ((wep->iv & 0xff00) == 0xff00) {
130  u8 B = (wep->iv >> 16) & 0xff;
131  if (B >= 3 && B < klen)
132  wep->iv += 0x0100;
133  }
134 
135  /* Prepend 24-bit IV to RC4 key and TX frame */
136  *pos++ = key[0] = (wep->iv >> 16) & 0xff;
137  *pos++ = key[1] = (wep->iv >> 8) & 0xff;
138  *pos++ = key[2] = wep->iv & 0xff;
139  *pos++ = wep->key_idx << 6;
140 
141  /* Copy rest of the WEP key (the secret part) */
142  memcpy(key + 3, wep->key, wep->key_len);
143 
144  if (!tcb_desc->bHwSec)
145  {
146 
147  /* Append little-endian CRC32 and encrypt it to produce ICV */
148  crc = ~crc32_le(~0, pos, len);
149  icv = skb_put(skb, 4);
150  icv[0] = crc;
151  icv[1] = crc >> 8;
152  icv[2] = crc >> 16;
153  icv[3] = crc >> 24;
154 
155  crypto_blkcipher_setkey(wep->tx_tfm, key, klen);
156  sg_init_one(&sg, pos, len+4);
157 
158  return crypto_blkcipher_encrypt(&desc, &sg, &sg, len + 4);
159  }
160 
161  return 0;
162 }
163 
164 
165 /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of
166  * the frame: IV (4 bytes), encrypted payload (including SNAP header),
167  * ICV (4 bytes). len includes both IV and ICV.
168  *
169  * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
170  * failure. If frame is OK, IV and ICV will be removed.
171  */
172 static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv)
173 {
174  struct prism2_wep_data *wep = priv;
175  u32 klen, plen;
176  u8 key[WEP_KEY_LEN + 3];
177  u8 keyidx, *pos;
178  cb_desc *tcb_desc = (cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE);
179  struct blkcipher_desc desc = {.tfm = wep->rx_tfm};
180  u32 crc;
181  u8 icv[4];
182  struct scatterlist sg;
183  if (skb->len < hdr_len + 8)
184  return -1;
185 
186  pos = skb->data + hdr_len;
187  key[0] = *pos++;
188  key[1] = *pos++;
189  key[2] = *pos++;
190  keyidx = *pos++ >> 6;
191  if (keyidx != wep->key_idx)
192  return -1;
193 
194  klen = 3 + wep->key_len;
195 
196  /* Copy rest of the WEP key (the secret part) */
197  memcpy(key + 3, wep->key, wep->key_len);
198 
199  /* Apply RC4 to data and compute CRC32 over decrypted data */
200  plen = skb->len - hdr_len - 8;
201 
202  if (!tcb_desc->bHwSec)
203  {
204  crypto_blkcipher_setkey(wep->rx_tfm, key, klen);
205  sg_init_one(&sg, pos, plen+4);
206 
207  if (crypto_blkcipher_decrypt(&desc, &sg, &sg, plen + 4))
208  return -7;
209 
210  crc = ~crc32_le(~0, pos, plen);
211  icv[0] = crc;
212  icv[1] = crc >> 8;
213  icv[2] = crc >> 16;
214  icv[3] = crc >> 24;
215  if (memcmp(icv, pos + plen, 4) != 0) {
216  /* ICV mismatch - drop frame */
217  return -2;
218  }
219  }
220  /* Remove IV and ICV */
221  memmove(skb->data + 4, skb->data, hdr_len);
222  skb_pull(skb, 4);
223  skb_trim(skb, skb->len - 4);
224 
225  return 0;
226 }
227 
228 
229 static int prism2_wep_set_key(void *key, int len, u8 *seq, void *priv)
230 {
231  struct prism2_wep_data *wep = priv;
232 
233  if (len < 0 || len > WEP_KEY_LEN)
234  return -1;
235 
236  memcpy(wep->key, key, len);
237  wep->key_len = len;
238 
239  return 0;
240 }
241 
242 
243 static int prism2_wep_get_key(void *key, int len, u8 *seq, void *priv)
244 {
245  struct prism2_wep_data *wep = priv;
246 
247  if (len < wep->key_len)
248  return -1;
249 
250  memcpy(key, wep->key, wep->key_len);
251 
252  return wep->key_len;
253 }
254 
255 
256 static char * prism2_wep_print_stats(char *p, void *priv)
257 {
258  struct prism2_wep_data *wep = priv;
259  p += sprintf(p, "key[%d] alg=WEP len=%d\n",
260  wep->key_idx, wep->key_len);
261  return p;
262 }
263 
264 
265 static struct ieee80211_crypto_ops ieee80211_crypt_wep = {
266  .name = "WEP",
267  .init = prism2_wep_init,
268  .deinit = prism2_wep_deinit,
269  .encrypt_mpdu = prism2_wep_encrypt,
270  .decrypt_mpdu = prism2_wep_decrypt,
271  .encrypt_msdu = NULL,
272  .decrypt_msdu = NULL,
273  .set_key = prism2_wep_set_key,
274  .get_key = prism2_wep_get_key,
275  .print_stats = prism2_wep_print_stats,
276  .extra_prefix_len = 4, /* IV */
277  .extra_postfix_len = 4, /* ICV */
278  .owner = THIS_MODULE,
279 };
280 
282 {
283  return ieee80211_register_crypto_ops(&ieee80211_crypt_wep);
284 }
285 
287 {
288  ieee80211_unregister_crypto_ops(&ieee80211_crypt_wep);
289 }
290 
292 {
293 // printk("============>%s()\n", __FUNCTION__);
294  return;
295 }