Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
run.c
Go to the documentation of this file.
1 #define DEBUG
2 
3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
5 
6 #include <asm/spu.h>
7 #include <asm/spu_priv1.h>
8 #include <asm/io.h>
9 #include <asm/unistd.h>
10 
11 #include "spufs.h"
12 
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu, int irq)
15 {
16  struct spu_context *ctx = spu->ctx;
17 
18  /*
19  * It should be impossible to preempt a context while an exception
20  * is being processed, since the context switch code is specially
21  * coded to deal with interrupts ... But, just in case, sanity check
22  * the context pointer. It is OK to return doing nothing since
23  * the exception will be regenerated when the context is resumed.
24  */
25  if (ctx) {
26  /* Copy exception arguments into module specific structure */
27  switch(irq) {
28  case 0 :
29  ctx->csa.class_0_pending = spu->class_0_pending;
30  ctx->csa.class_0_dar = spu->class_0_dar;
31  break;
32  case 1 :
33  ctx->csa.class_1_dsisr = spu->class_1_dsisr;
34  ctx->csa.class_1_dar = spu->class_1_dar;
35  break;
36  case 2 :
37  break;
38  }
39 
40  /* ensure that the exception status has hit memory before a
41  * thread waiting on the context's stop queue is woken */
42  smp_wmb();
43 
44  wake_up_all(&ctx->stop_wq);
45  }
46 }
47 
49 {
50  u64 dsisr;
51  u32 stopped;
52 
53  stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
54  SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
55 
56 top:
57  *stat = ctx->ops->status_read(ctx);
58  if (*stat & stopped) {
59  /*
60  * If the spu hasn't finished stopping, we need to
61  * re-read the register to get the stopped value.
62  */
63  if (*stat & SPU_STATUS_RUNNING)
64  goto top;
65  return 1;
66  }
67 
69  return 1;
70 
71  dsisr = ctx->csa.class_1_dsisr;
72  if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
73  return 1;
74 
75  if (ctx->csa.class_0_pending)
76  return 1;
77 
78  return 0;
79 }
80 
81 static int spu_setup_isolated(struct spu_context *ctx)
82 {
83  int ret;
84  u64 __iomem *mfc_cntl;
85  u64 sr1;
86  u32 status;
87  unsigned long timeout;
88  const u32 status_loading = SPU_STATUS_RUNNING
89  | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
90 
91  ret = -ENODEV;
92  if (!isolated_loader)
93  goto out;
94 
95  /*
96  * We need to exclude userspace access to the context.
97  *
98  * To protect against memory access we invalidate all ptes
99  * and make sure the pagefault handlers block on the mutex.
100  */
101  spu_unmap_mappings(ctx);
102 
103  mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
104 
105  /* purge the MFC DMA queue to ensure no spurious accesses before we
106  * enter kernel mode */
107  timeout = jiffies + HZ;
108  out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
109  while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
110  != MFC_CNTL_PURGE_DMA_COMPLETE) {
111  if (time_after(jiffies, timeout)) {
112  printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
113  __func__);
114  ret = -EIO;
115  goto out;
116  }
117  cond_resched();
118  }
119 
120  /* clear purge status */
121  out_be64(mfc_cntl, 0);
122 
123  /* put the SPE in kernel mode to allow access to the loader */
124  sr1 = spu_mfc_sr1_get(ctx->spu);
125  sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
126  spu_mfc_sr1_set(ctx->spu, sr1);
127 
128  /* start the loader */
129  ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
130  ctx->ops->signal2_write(ctx,
131  (unsigned long)isolated_loader & 0xffffffff);
132 
133  ctx->ops->runcntl_write(ctx,
134  SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
135 
136  ret = 0;
137  timeout = jiffies + HZ;
138  while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
139  status_loading) {
140  if (time_after(jiffies, timeout)) {
141  printk(KERN_ERR "%s: timeout waiting for loader\n",
142  __func__);
143  ret = -EIO;
144  goto out_drop_priv;
145  }
146  cond_resched();
147  }
148 
149  if (!(status & SPU_STATUS_RUNNING)) {
150  /* If isolated LOAD has failed: run SPU, we will get a stop-and
151  * signal later. */
152  pr_debug("%s: isolated LOAD failed\n", __func__);
153  ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
154  ret = -EACCES;
155  goto out_drop_priv;
156  }
157 
158  if (!(status & SPU_STATUS_ISOLATED_STATE)) {
159  /* This isn't allowed by the CBEA, but check anyway */
160  pr_debug("%s: SPU fell out of isolated mode?\n", __func__);
161  ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
162  ret = -EINVAL;
163  goto out_drop_priv;
164  }
165 
166 out_drop_priv:
167  /* Finished accessing the loader. Drop kernel mode */
168  sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
169  spu_mfc_sr1_set(ctx->spu, sr1);
170 
171 out:
172  return ret;
173 }
174 
175 static int spu_run_init(struct spu_context *ctx, u32 *npc)
176 {
177  unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
178  int ret;
179 
180  spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
181 
182  /*
183  * NOSCHED is synchronous scheduling with respect to the caller.
184  * The caller waits for the context to be loaded.
185  */
186  if (ctx->flags & SPU_CREATE_NOSCHED) {
187  if (ctx->state == SPU_STATE_SAVED) {
188  ret = spu_activate(ctx, 0);
189  if (ret)
190  return ret;
191  }
192  }
193 
194  /*
195  * Apply special setup as required.
196  */
197  if (ctx->flags & SPU_CREATE_ISOLATE) {
198  if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
199  ret = spu_setup_isolated(ctx);
200  if (ret)
201  return ret;
202  }
203 
204  /*
205  * If userspace has set the runcntrl register (eg, to
206  * issue an isolated exit), we need to re-set it here
207  */
208  runcntl = ctx->ops->runcntl_read(ctx) &
209  (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
210  if (runcntl == 0)
211  runcntl = SPU_RUNCNTL_RUNNABLE;
212  } else {
213  unsigned long privcntl;
214 
215  if (test_thread_flag(TIF_SINGLESTEP))
216  privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
217  else
218  privcntl = SPU_PRIVCNTL_MODE_NORMAL;
219 
220  ctx->ops->privcntl_write(ctx, privcntl);
221  ctx->ops->npc_write(ctx, *npc);
222  }
223 
224  ctx->ops->runcntl_write(ctx, runcntl);
225 
226  if (ctx->flags & SPU_CREATE_NOSCHED) {
227  spuctx_switch_state(ctx, SPU_UTIL_USER);
228  } else {
229 
230  if (ctx->state == SPU_STATE_SAVED) {
231  ret = spu_activate(ctx, 0);
232  if (ret)
233  return ret;
234  } else {
235  spuctx_switch_state(ctx, SPU_UTIL_USER);
236  }
237  }
238 
240  return 0;
241 }
242 
243 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
244  u32 *status)
245 {
246  int ret = 0;
247 
248  spu_del_from_rq(ctx);
249 
250  *status = ctx->ops->status_read(ctx);
251  *npc = ctx->ops->npc_read(ctx);
252 
253  spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
256  spu_release(ctx);
257 
258  if (signal_pending(current))
259  ret = -ERESTARTSYS;
260 
261  return ret;
262 }
263 
264 /*
265  * SPU syscall restarting is tricky because we violate the basic
266  * assumption that the signal handler is running on the interrupted
267  * thread. Here instead, the handler runs on PowerPC user space code,
268  * while the syscall was called from the SPU.
269  * This means we can only do a very rough approximation of POSIX
270  * signal semantics.
271  */
272 static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
273  unsigned int *npc)
274 {
275  int ret;
276 
277  switch (*spu_ret) {
278  case -ERESTARTSYS:
279  case -ERESTARTNOINTR:
280  /*
281  * Enter the regular syscall restarting for
282  * sys_spu_run, then restart the SPU syscall
283  * callback.
284  */
285  *npc -= 8;
286  ret = -ERESTARTSYS;
287  break;
288  case -ERESTARTNOHAND:
289  case -ERESTART_RESTARTBLOCK:
290  /*
291  * Restart block is too hard for now, just return -EINTR
292  * to the SPU.
293  * ERESTARTNOHAND comes from sys_pause, we also return
294  * -EINTR from there.
295  * Assume that we need to be restarted ourselves though.
296  */
297  *spu_ret = -EINTR;
298  ret = -ERESTARTSYS;
299  break;
300  default:
301  printk(KERN_WARNING "%s: unexpected return code %ld\n",
302  __func__, *spu_ret);
303  ret = 0;
304  }
305  return ret;
306 }
307 
308 static int spu_process_callback(struct spu_context *ctx)
309 {
310  struct spu_syscall_block s;
311  u32 ls_pointer, npc;
312  void __iomem *ls;
313  long spu_ret;
314  int ret;
315 
316  /* get syscall block from local store */
317  npc = ctx->ops->npc_read(ctx) & ~3;
318  ls = (void __iomem *)ctx->ops->get_ls(ctx);
319  ls_pointer = in_be32(ls + npc);
320  if (ls_pointer > (LS_SIZE - sizeof(s)))
321  return -EFAULT;
322  memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
323 
324  /* do actual syscall without pinning the spu */
325  ret = 0;
326  spu_ret = -ENOSYS;
327  npc += 4;
328 
329  if (s.nr_ret < __NR_syscalls) {
330  spu_release(ctx);
331  /* do actual system call from here */
332  spu_ret = spu_sys_callback(&s);
333  if (spu_ret <= -ERESTARTSYS) {
334  ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
335  }
336  mutex_lock(&ctx->state_mutex);
337  if (ret == -ERESTARTSYS)
338  return ret;
339  }
340 
341  /* need to re-get the ls, as it may have changed when we released the
342  * spu */
343  ls = (void __iomem *)ctx->ops->get_ls(ctx);
344 
345  /* write result, jump over indirect pointer */
346  memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
347  ctx->ops->npc_write(ctx, npc);
348  ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
349  return ret;
350 }
351 
352 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
353 {
354  int ret;
355  struct spu *spu;
356  u32 status;
357 
359  return -ERESTARTSYS;
360 
361  ctx->event_return = 0;
362 
363  ret = spu_acquire(ctx);
364  if (ret)
365  goto out_unlock;
366 
367  spu_enable_spu(ctx);
368 
370 
371  ret = spu_run_init(ctx, npc);
372  if (ret) {
373  spu_release(ctx);
374  goto out;
375  }
376 
377  do {
378  ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
379  if (unlikely(ret)) {
380  /*
381  * This is nasty: we need the state_mutex for all the
382  * bookkeeping even if the syscall was interrupted by
383  * a signal. ewww.
384  */
385  mutex_lock(&ctx->state_mutex);
386  break;
387  }
388  spu = ctx->spu;
390  &ctx->sched_flags))) {
391  if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
392  spu_switch_notify(spu, ctx);
393  continue;
394  }
395  }
396 
397  spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
398 
399  if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
400  (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
401  ret = spu_process_callback(ctx);
402  if (ret)
403  break;
404  status &= ~SPU_STATUS_STOPPED_BY_STOP;
405  }
406  ret = spufs_handle_class1(ctx);
407  if (ret)
408  break;
409 
410  ret = spufs_handle_class0(ctx);
411  if (ret)
412  break;
413 
414  if (signal_pending(current))
415  ret = -ERESTARTSYS;
416  } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
417  SPU_STATUS_STOPPED_BY_HALT |
418  SPU_STATUS_SINGLE_STEP)));
419 
420  spu_disable_spu(ctx);
421  ret = spu_run_fini(ctx, npc, &status);
422  spu_yield(ctx);
423 
424  if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
425  (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100))
426  ctx->stats.libassist++;
427 
428  if ((ret == 0) ||
429  ((ret == -ERESTARTSYS) &&
430  ((status & SPU_STATUS_STOPPED_BY_HALT) ||
431  (status & SPU_STATUS_SINGLE_STEP) ||
432  ((status & SPU_STATUS_STOPPED_BY_STOP) &&
433  (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
434  ret = status;
435 
436  /* Note: we don't need to force_sig SIGTRAP on single-step
437  * since we have TIF_SINGLESTEP set, thus the kernel will do
438  * it upon return from the syscall anyawy
439  */
440  if (unlikely(status & SPU_STATUS_SINGLE_STEP))
441  ret = -ERESTARTSYS;
442 
443  else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP)
444  && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) {
446  ret = -ERESTARTSYS;
447  }
448 
449 out:
450  *event = ctx->event_return;
451 out_unlock:
452  mutex_unlock(&ctx->run_mutex);
453  return ret;
454 }