Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
kgdb.c
Go to the documentation of this file.
1 /*
2  * SuperH KGDB support
3  *
4  * Copyright (C) 2008 - 2012 Paul Mundt
5  *
6  * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
7  *
8  * This file is subject to the terms and conditions of the GNU General Public
9  * License. See the file "COPYING" in the main directory of this archive
10  * for more details.
11  */
12 #include <linux/kgdb.h>
13 #include <linux/kdebug.h>
14 #include <linux/irq.h>
15 #include <linux/io.h>
16 #include <asm/cacheflush.h>
17 #include <asm/traps.h>
18 
19 /* Macros for single step instruction identification */
20 #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
21 #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
22 #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
23  (((op) & 0x7f ) << 1))
24 #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
25 #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
26 #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
27 #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
28  (((op) & 0x7ff) << 1))
29 #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
30 #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
31 #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
32 #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
33  (((op) & 0x7ff) << 1))
34 #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
35 #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
36 #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
37 #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
38 #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
39 #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
40 #define OPCODE_RTS(op) ((op) == 0xb)
41 #define OPCODE_RTE(op) ((op) == 0x2b)
42 
43 #define SR_T_BIT_MASK 0x1
44 #define STEP_OPCODE 0xc33d
45 
46 /* Calculate the new address for after a step */
47 static short *get_step_address(struct pt_regs *linux_regs)
48 {
49  insn_size_t op = __raw_readw(linux_regs->pc);
50  long addr;
51 
52  /* BT */
53  if (OPCODE_BT(op)) {
54  if (linux_regs->sr & SR_T_BIT_MASK)
55  addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
56  else
57  addr = linux_regs->pc + 2;
58  }
59 
60  /* BTS */
61  else if (OPCODE_BTS(op)) {
62  if (linux_regs->sr & SR_T_BIT_MASK)
63  addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
64  else
65  addr = linux_regs->pc + 4; /* Not in delay slot */
66  }
67 
68  /* BF */
69  else if (OPCODE_BF(op)) {
70  if (!(linux_regs->sr & SR_T_BIT_MASK))
71  addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
72  else
73  addr = linux_regs->pc + 2;
74  }
75 
76  /* BFS */
77  else if (OPCODE_BFS(op)) {
78  if (!(linux_regs->sr & SR_T_BIT_MASK))
79  addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
80  else
81  addr = linux_regs->pc + 4; /* Not in delay slot */
82  }
83 
84  /* BRA */
85  else if (OPCODE_BRA(op))
86  addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
87 
88  /* BRAF */
89  else if (OPCODE_BRAF(op))
90  addr = linux_regs->pc + 4
91  + linux_regs->regs[OPCODE_BRAF_REG(op)];
92 
93  /* BSR */
94  else if (OPCODE_BSR(op))
95  addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
96 
97  /* BSRF */
98  else if (OPCODE_BSRF(op))
99  addr = linux_regs->pc + 4
100  + linux_regs->regs[OPCODE_BSRF_REG(op)];
101 
102  /* JMP */
103  else if (OPCODE_JMP(op))
104  addr = linux_regs->regs[OPCODE_JMP_REG(op)];
105 
106  /* JSR */
107  else if (OPCODE_JSR(op))
108  addr = linux_regs->regs[OPCODE_JSR_REG(op)];
109 
110  /* RTS */
111  else if (OPCODE_RTS(op))
112  addr = linux_regs->pr;
113 
114  /* RTE */
115  else if (OPCODE_RTE(op))
116  addr = linux_regs->regs[15];
117 
118  /* Other */
119  else
120  addr = linux_regs->pc + instruction_size(op);
121 
122  flush_icache_range(addr, addr + instruction_size(op));
123  return (short *)addr;
124 }
125 
126 /*
127  * Replace the instruction immediately after the current instruction
128  * (i.e. next in the expected flow of control) with a trap instruction,
129  * so that returning will cause only a single instruction to be executed.
130  * Note that this model is slightly broken for instructions with delay
131  * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
132  * instruction in the delay slot will be executed.
133  */
134 
135 static unsigned long stepped_address;
136 static insn_size_t stepped_opcode;
137 
138 static void do_single_step(struct pt_regs *linux_regs)
139 {
140  /* Determine where the target instruction will send us to */
141  unsigned short *addr = get_step_address(linux_regs);
142 
143  stepped_address = (int)addr;
144 
145  /* Replace it */
146  stepped_opcode = __raw_readw((long)addr);
147  *addr = STEP_OPCODE;
148 
149  /* Flush and return */
150  flush_icache_range((long)addr, (long)addr +
151  instruction_size(stepped_opcode));
152 }
153 
154 /* Undo a single step */
155 static void undo_single_step(struct pt_regs *linux_regs)
156 {
157  /* If we have stepped, put back the old instruction */
158  /* Use stepped_address in case we stopped elsewhere */
159  if (stepped_opcode != 0) {
160  __raw_writew(stepped_opcode, stepped_address);
161  flush_icache_range(stepped_address, stepped_address + 2);
162  }
163 
164  stepped_opcode = 0;
165 }
166 
167 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
168  { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
169  { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
170  { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
171  { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
172  { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
173  { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
174  { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
175  { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
176  { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
177  { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
178  { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
179  { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
180  { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
181  { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
182  { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
183  { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
184  { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) },
185  { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) },
186  { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) },
187  { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) },
188  { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) },
189  { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) },
190  { "vbr", GDB_SIZEOF_REG, -1 },
191 };
192 
193 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
194 {
195  if (regno < 0 || regno >= DBG_MAX_REG_NUM)
196  return -EINVAL;
197 
198  if (dbg_reg_def[regno].offset != -1)
199  memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
200  dbg_reg_def[regno].size);
201 
202  return 0;
203 }
204 
205 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
206 {
207  if (regno >= DBG_MAX_REG_NUM || regno < 0)
208  return NULL;
209 
210  if (dbg_reg_def[regno].size != -1)
211  memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
212  dbg_reg_def[regno].size);
213 
214  switch (regno) {
215  case GDB_VBR:
216  __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem));
217  break;
218  }
219 
220  return dbg_reg_def[regno].name;
221 }
222 
223 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
224 {
225  struct pt_regs *thread_regs = task_pt_regs(p);
226  int reg;
227 
228  /* Initialize to zero */
229  for (reg = 0; reg < DBG_MAX_REG_NUM; reg++)
230  gdb_regs[reg] = 0;
231 
232  /*
233  * Copy out GP regs 8 to 14.
234  *
235  * switch_to() relies on SR.RB toggling, so regs 0->7 are banked
236  * and need privileged instructions to get to. The r15 value we
237  * fetch from the thread info directly.
238  */
239  for (reg = GDB_R8; reg < GDB_R15; reg++)
240  gdb_regs[reg] = thread_regs->regs[reg];
241 
242  gdb_regs[GDB_R15] = p->thread.sp;
243  gdb_regs[GDB_PC] = p->thread.pc;
244 
245  /*
246  * Additional registers we have context for
247  */
248  gdb_regs[GDB_PR] = thread_regs->pr;
249  gdb_regs[GDB_GBR] = thread_regs->gbr;
250 }
251 
253  char *remcomInBuffer, char *remcomOutBuffer,
254  struct pt_regs *linux_regs)
255 {
256  unsigned long addr;
257  char *ptr;
258 
259  /* Undo any stepping we may have done */
260  undo_single_step(linux_regs);
261 
262  switch (remcomInBuffer[0]) {
263  case 'c':
264  case 's':
265  /* try to read optional parameter, pc unchanged if no parm */
266  ptr = &remcomInBuffer[1];
267  if (kgdb_hex2long(&ptr, &addr))
268  linux_regs->pc = addr;
269  case 'D':
270  case 'k':
272 
273  if (remcomInBuffer[0] == 's') {
274  do_single_step(linux_regs);
275  kgdb_single_step = 1;
276 
279  }
280 
281  return 0;
282  }
283 
284  /* this means that we do not want to exit from the handler: */
285  return -1;
286 }
287 
288 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
289 {
290  if (exception == 60)
291  return instruction_pointer(regs) - 2;
292  return instruction_pointer(regs);
293 }
294 
295 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
296 {
297  regs->pc = ip;
298 }
299 
300 /*
301  * The primary entry points for the kgdb debug trap table entries.
302  */
304 {
305  unsigned long flags;
307 
308  local_irq_save(flags);
309  regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
311  local_irq_restore(flags);
312 }
313 
314 static void kgdb_call_nmi_hook(void *ignored)
315 {
317 }
318 
319 void kgdb_roundup_cpus(unsigned long flags)
320 {
322  smp_call_function(kgdb_call_nmi_hook, NULL, 0);
324 }
325 
326 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
327 {
328  int ret;
329 
330  switch (cmd) {
331  case DIE_BREAKPOINT:
332  /*
333  * This means a user thread is single stepping
334  * a system call which should be ignored
335  */
336  if (test_thread_flag(TIF_SINGLESTEP))
337  return NOTIFY_DONE;
338 
339  ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr,
340  args->err, args->regs);
341  if (ret)
342  return NOTIFY_DONE;
343 
344  break;
345  }
346 
347  return NOTIFY_STOP;
348 }
349 
350 static int
351 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
352 {
353  unsigned long flags;
354  int ret;
355 
356  local_irq_save(flags);
357  ret = __kgdb_notify(ptr, cmd);
358  local_irq_restore(flags);
359 
360  return ret;
361 }
362 
363 static struct notifier_block kgdb_notifier = {
364  .notifier_call = kgdb_notify,
365 
366  /*
367  * Lowest-prio notifier priority, we want to be notified last:
368  */
369  .priority = -INT_MAX,
370 };
371 
372 int kgdb_arch_init(void)
373 {
374  return register_die_notifier(&kgdb_notifier);
375 }
376 
377 void kgdb_arch_exit(void)
378 {
379  unregister_die_notifier(&kgdb_notifier);
380 }
381 
382 struct kgdb_arch arch_kgdb_ops = {
383  /* Breakpoint instruction: trapa #0x3c */
384 #ifdef CONFIG_CPU_LITTLE_ENDIAN
385  .gdb_bpt_instr = { 0x3c, 0xc3 },
386 #else
387  .gdb_bpt_instr = { 0xc3, 0x3c },
388 #endif
389 };