Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf_event.c
Go to the documentation of this file.
1 /*
2  * Performance event support framework for SuperH hardware counters.
3  *
4  * Copyright (C) 2009 Paul Mundt
5  *
6  * Heavily based on the x86 and PowerPC implementations.
7  *
8  * x86:
9  * Copyright (C) 2008 Thomas Gleixner <[email protected]>
10  * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11  * Copyright (C) 2009 Jaswinder Singh Rajput
12  * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13  * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <[email protected]>
14  * Copyright (C) 2009 Intel Corporation, <[email protected]>
15  *
16  * ppc:
17  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
18  *
19  * This file is subject to the terms and conditions of the GNU General Public
20  * License. See the file "COPYING" in the main directory of this archive
21  * for more details.
22  */
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <linux/export.h>
29 #include <asm/processor.h>
30 
31 struct cpu_hw_events {
33  unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
35 };
36 
38 
39 static struct sh_pmu *sh_pmu __read_mostly;
40 
41 /* Number of perf_events counting hardware events */
42 static atomic_t num_events;
43 /* Used to avoid races in calling reserve/release_pmc_hardware */
44 static DEFINE_MUTEX(pmc_reserve_mutex);
45 
46 /*
47  * Stub these out for now, do something more profound later.
48  */
50 {
51  return 0;
52 }
53 
55 {
56 }
57 
58 static inline int sh_pmu_initialized(void)
59 {
60  return !!sh_pmu;
61 }
62 
63 const char *perf_pmu_name(void)
64 {
65  if (!sh_pmu)
66  return NULL;
67 
68  return sh_pmu->name;
69 }
71 
73 {
74  if (!sh_pmu)
75  return 0;
76 
77  return sh_pmu->num_events;
78 }
80 
81 /*
82  * Release the PMU if this is the last perf_event.
83  */
84 static void hw_perf_event_destroy(struct perf_event *event)
85 {
86  if (!atomic_add_unless(&num_events, -1, 1)) {
87  mutex_lock(&pmc_reserve_mutex);
88  if (atomic_dec_return(&num_events) == 0)
90  mutex_unlock(&pmc_reserve_mutex);
91  }
92 }
93 
94 static int hw_perf_cache_event(int config, int *evp)
95 {
96  unsigned long type, op, result;
97  int ev;
98 
99  if (!sh_pmu->cache_events)
100  return -EINVAL;
101 
102  /* unpack config */
103  type = config & 0xff;
104  op = (config >> 8) & 0xff;
105  result = (config >> 16) & 0xff;
106 
107  if (type >= PERF_COUNT_HW_CACHE_MAX ||
110  return -EINVAL;
111 
112  ev = (*sh_pmu->cache_events)[type][op][result];
113  if (ev == 0)
114  return -EOPNOTSUPP;
115  if (ev == -1)
116  return -EINVAL;
117  *evp = ev;
118  return 0;
119 }
120 
121 static int __hw_perf_event_init(struct perf_event *event)
122 {
123  struct perf_event_attr *attr = &event->attr;
124  struct hw_perf_event *hwc = &event->hw;
125  int config = -1;
126  int err;
127 
128  if (!sh_pmu_initialized())
129  return -ENODEV;
130 
131  /*
132  * All of the on-chip counters are "limited", in that they have
133  * no interrupts, and are therefore unable to do sampling without
134  * further work and timer assistance.
135  */
136  if (hwc->sample_period)
137  return -EINVAL;
138 
139  /*
140  * See if we need to reserve the counter.
141  *
142  * If no events are currently in use, then we have to take a
143  * mutex to ensure that we don't race with another task doing
144  * reserve_pmc_hardware or release_pmc_hardware.
145  */
146  err = 0;
147  if (!atomic_inc_not_zero(&num_events)) {
148  mutex_lock(&pmc_reserve_mutex);
149  if (atomic_read(&num_events) == 0 &&
151  err = -EBUSY;
152  else
153  atomic_inc(&num_events);
154  mutex_unlock(&pmc_reserve_mutex);
155  }
156 
157  if (err)
158  return err;
159 
160  event->destroy = hw_perf_event_destroy;
161 
162  switch (attr->type) {
163  case PERF_TYPE_RAW:
164  config = attr->config & sh_pmu->raw_event_mask;
165  break;
166  case PERF_TYPE_HW_CACHE:
167  err = hw_perf_cache_event(attr->config, &config);
168  if (err)
169  return err;
170  break;
171  case PERF_TYPE_HARDWARE:
172  if (attr->config >= sh_pmu->max_events)
173  return -EINVAL;
174 
175  config = sh_pmu->event_map(attr->config);
176  break;
177  }
178 
179  if (config == -1)
180  return -EINVAL;
181 
182  hwc->config |= config;
183 
184  return 0;
185 }
186 
187 static void sh_perf_event_update(struct perf_event *event,
188  struct hw_perf_event *hwc, int idx)
189 {
190  u64 prev_raw_count, new_raw_count;
191  s64 delta;
192  int shift = 0;
193 
194  /*
195  * Depending on the counter configuration, they may or may not
196  * be chained, in which case the previous counter value can be
197  * updated underneath us if the lower-half overflows.
198  *
199  * Our tactic to handle this is to first atomically read and
200  * exchange a new raw count - then add that new-prev delta
201  * count to the generic counter atomically.
202  *
203  * As there is no interrupt associated with the overflow events,
204  * this is the simplest approach for maintaining consistency.
205  */
206 again:
207  prev_raw_count = local64_read(&hwc->prev_count);
208  new_raw_count = sh_pmu->read(idx);
209 
210  if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
211  new_raw_count) != prev_raw_count)
212  goto again;
213 
214  /*
215  * Now we have the new raw value and have updated the prev
216  * timestamp already. We can now calculate the elapsed delta
217  * (counter-)time and add that to the generic counter.
218  *
219  * Careful, not all hw sign-extends above the physical width
220  * of the count.
221  */
222  delta = (new_raw_count << shift) - (prev_raw_count << shift);
223  delta >>= shift;
224 
225  local64_add(delta, &event->count);
226 }
227 
228 static void sh_pmu_stop(struct perf_event *event, int flags)
229 {
230  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
231  struct hw_perf_event *hwc = &event->hw;
232  int idx = hwc->idx;
233 
234  if (!(event->hw.state & PERF_HES_STOPPED)) {
235  sh_pmu->disable(hwc, idx);
236  cpuc->events[idx] = NULL;
237  event->hw.state |= PERF_HES_STOPPED;
238  }
239 
240  if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
241  sh_perf_event_update(event, &event->hw, idx);
242  event->hw.state |= PERF_HES_UPTODATE;
243  }
244 }
245 
246 static void sh_pmu_start(struct perf_event *event, int flags)
247 {
248  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
249  struct hw_perf_event *hwc = &event->hw;
250  int idx = hwc->idx;
251 
252  if (WARN_ON_ONCE(idx == -1))
253  return;
254 
255  if (flags & PERF_EF_RELOAD)
256  WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
257 
258  cpuc->events[idx] = event;
259  event->hw.state = 0;
260  sh_pmu->enable(hwc, idx);
261 }
262 
263 static void sh_pmu_del(struct perf_event *event, int flags)
264 {
265  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
266 
267  sh_pmu_stop(event, PERF_EF_UPDATE);
268  __clear_bit(event->hw.idx, cpuc->used_mask);
269 
271 }
272 
273 static int sh_pmu_add(struct perf_event *event, int flags)
274 {
275  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
276  struct hw_perf_event *hwc = &event->hw;
277  int idx = hwc->idx;
278  int ret = -EAGAIN;
279 
280  perf_pmu_disable(event->pmu);
281 
282  if (__test_and_set_bit(idx, cpuc->used_mask)) {
284  if (idx == sh_pmu->num_events)
285  goto out;
286 
287  __set_bit(idx, cpuc->used_mask);
288  hwc->idx = idx;
289  }
290 
291  sh_pmu->disable(hwc, idx);
292 
293  event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
294  if (flags & PERF_EF_START)
295  sh_pmu_start(event, PERF_EF_RELOAD);
296 
298  ret = 0;
299 out:
300  perf_pmu_enable(event->pmu);
301  return ret;
302 }
303 
304 static void sh_pmu_read(struct perf_event *event)
305 {
306  sh_perf_event_update(event, &event->hw, event->hw.idx);
307 }
308 
309 static int sh_pmu_event_init(struct perf_event *event)
310 {
311  int err;
312 
313  /* does not support taken branch sampling */
314  if (has_branch_stack(event))
315  return -EOPNOTSUPP;
316 
317  switch (event->attr.type) {
318  case PERF_TYPE_RAW:
319  case PERF_TYPE_HW_CACHE:
320  case PERF_TYPE_HARDWARE:
321  err = __hw_perf_event_init(event);
322  break;
323 
324  default:
325  return -ENOENT;
326  }
327 
328  if (unlikely(err)) {
329  if (event->destroy)
330  event->destroy(event);
331  }
332 
333  return err;
334 }
335 
336 static void sh_pmu_enable(struct pmu *pmu)
337 {
338  if (!sh_pmu_initialized())
339  return;
340 
341  sh_pmu->enable_all();
342 }
343 
344 static void sh_pmu_disable(struct pmu *pmu)
345 {
346  if (!sh_pmu_initialized())
347  return;
348 
349  sh_pmu->disable_all();
350 }
351 
352 static struct pmu pmu = {
353  .pmu_enable = sh_pmu_enable,
354  .pmu_disable = sh_pmu_disable,
355  .event_init = sh_pmu_event_init,
356  .add = sh_pmu_add,
357  .del = sh_pmu_del,
358  .start = sh_pmu_start,
359  .stop = sh_pmu_stop,
360  .read = sh_pmu_read,
361 };
362 
363 static void sh_pmu_setup(int cpu)
364 {
365  struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
366 
367  memset(cpuhw, 0, sizeof(struct cpu_hw_events));
368 }
369 
370 static int __cpuinit
371 sh_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
372 {
373  unsigned int cpu = (long)hcpu;
374 
375  switch (action & ~CPU_TASKS_FROZEN) {
376  case CPU_UP_PREPARE:
377  sh_pmu_setup(cpu);
378  break;
379 
380  default:
381  break;
382  }
383 
384  return NOTIFY_OK;
385 }
386 
388 {
389  if (sh_pmu)
390  return -EBUSY;
391  sh_pmu = _pmu;
392 
393  pr_info("Performance Events: %s support registered\n", _pmu->name);
394 
396 
397  perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
398  perf_cpu_notifier(sh_pmu_notifier);
399  return 0;
400 }